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1. Introduction and notation. Let f be a quadratic form with integer
coefficients, in any number » of variables. Then by ¢(f), the class-number
of f, is meant the number of classes-in the genus of f. I showed in [1] that
under certain transformations the class-mumber does not increase. The
reyults of {11, which were used in [2] to show that ¢(f) > 1 for every posi-
tive-definite f with n > 11, will hére be improved, so as to make’ poss1ble
some further applications explained in §§ 8, 11 below.

The teansformations will be defined in a slightly different way, so that
we shall have two alternative ways of dealing with the prime number 2.
The effect of the transformations on the arithmetic properties of the form,
and the oages in which they leave the class-number unaltered, will be in-
vegtigated more fully than in [1). The present paper ig independent of [1].

Ttalic letters, with or without accents and subscripts, denote integers,
» always prime, except f, g, #, used for quadratic forms (always with
integer coefficients), Latin capitals, except F, @, also used for quadratic:
forms, denote square matrices, I being an’ 1dentity matri¥, Small Latin
letter in bold type denote column vecbors, with integer elements. An aceent
is used to denote transposition of & matrix or vector. 4, is the standard
lattice in n-space, and its points are regarded as column vestors; its.origin

i3 0 = ¢0l{0, ..., 0}. M, is the sub-lattice {Mac: zed,} and md, (m+# 0)

means (ml )A
The matrix 4(f), = 4'(f), of the quadratic form fig defmed 8o that
we have the identities

(1.1) flaty) = fl@)+o' AN ly+fy), fl@) =ixA(f)z.
The discriminant ¢ = d(f) is defined by _

' (—1)rdetA(f) @ 2],
y(—1y—tdet A(f) if-. 2%m.
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Tt is easily seen that 4'(f) = —A(f)(med 2), giving det 4 (f) = 0(mod 2)
if 2% n, so & is always an mteger We suppose always a{f) # 0; that ig,
J non-singalar.

The symbols ~, v~ denote equivalenae over the rational integers,

the real field, and the p- adlc integers respectively; and fof’ means f ~f
and _f.-;, f' for every prime p. So the class and genus of f are the sots
{f's f ~F} and {f': f=~f7}, respectively. )
All quadratic equations occurring in the paper are Identltnes
Now let # be a binary relatlon between quadratic forms. We notice

first that if
_ f~fy TRy
.3y - f#g and g ~g’]=>resp. fayg'
Fay g~9g

then # defines, in an obvious way, a mapping from classes to classes.

This mapping may or may not be 1-1. Ws shall express it loosely by writ-

ing f #g with the unders’candmg that f, g aTe any representa.twes of their
classes.

We shall spy that fis normaliced under @ if fRg#f implies |d(g)]
> A(f)], minimal under & it f#g implies gZf, and almost m'bmmal under
9! it f&g&h implies ecither gZf or 2y. .

2. Transformations of gquadratic forms. For m >0, e =0 or 1, and
n-gxy f-we consider the me A, satisfying the two congruences

(2.1) v - A(fye =0 (mod m),

(2.2) 2°f(x) = 0 (mod m).

It is clear from (1.1) that '

(2.3) " {21) = (2.2) in case &= 1 or 21’%

Tn case & = 0, (1.1) shows that (2.1) and (2.9) are together equivalent
to f{x 4 #) == f{2) (mod m) for every ze A,. From this remark and (2.8),

(2.4) . A(m, 2, f) = {2 @e 4,, (2.1), (2.2)}

is & sub-lattice of A,. Clearly A(m, s, f') = A(m, e, f) it f' ip identically
congruent to f modulo m. And if detT = +1 and f'(z) = f(Tx), then
A(m, &, f') = T A(m, ¢, f). We choose M so that :

(2.5) . MA, = A(m,s, ),

and note that this remains valid with M, in place of M if and only if
= M1 for some T with detT =~ 1. Moreover, since each column of M
satisties (2.1), we have m|A(f)M, whence by transposition m|M’A(f).
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Now we define o form g by

(2.6) g(y) = 2w if(My), Alg) = 2m M A(NHY.

1t is elear that ¢ has integer coefficients; and 4(g) # 0 since the obvious
A(m, &,f) = md, implies det M 0. We define f—>(m, )¢ to mean that
there exixts M suoch that (2.5) and (2.6) hold. From the remarks following
(2.5) and (2.6), (1.3) holds with—{m, ¢) for 2. So we may regard—(m, ¢)
as o olass-to-class mapping; it is the m-mapping of [1]if s = 0.

Again using the obvious M4, > msd,, we see that ¥ = mA~! has
integer eloments and go we may ‘write (2.5), (2.8) as o

p (2.7) A(m, s, f) = {x: xed,, Na = 0 (mod m)},

(2.8) fl@) = 27*m Yg(Nw), MN =ml.

In the foregoing, we have worked in the ving Z of rational inbegers,
but the whole argument goes fhrough in the ring Z, of p-adic intogers
{7 any prime), with Z embedded in the natural way. Suppose we do 8o, with
forms f, ¢ having coefficients in Z,, mairices and vectors having elements
inZ,, and detT a p-adic unit. We obtain a mapping of classes under o

satistying (1.8) with ~ for ~. Back to Z by specializing, and we have

" (for all p,m,e)

(2.9) f’;"f’r f—(m, 8}y, and f'—(m, s)g" = g';’g'-
The case p 1 m of (2.9) follows also from the fivst of
(2.10)

f(m,a)g > g 2'mf for pYm, and g2f;

these a&e clear from (2.6), {2.8). Using (2.9) and the second half of (2.10),
we see thatl ' »

(211 . fe2f,

3. Repented transformation, easy cases. For m, e a5 in § 2 and ¢, n satis-
fying the same conditions, that is, ¢ > 0,9 =0o0r1, we investigate the
produet of —(m, &) and —{g, ). That is, we seek to eliminate g from -

(3 1) f>(m,8)g, g nh
Ohoosmg M g0 ﬁha,t (2.5) and (2.6) hold, we substitute g, 7, g, ¥ for m,

f>(m,e)g, and  fr(m,e)g >g =g

& f, @in (2.1), (2.2), and then substitute for g, A (g) from (2.6). So we seo

that A(q, 7, g)is the set of yeA satisfying the congruences

(3.2) 20 M A ( f)My = 0, 2‘+"m'1f(My = o (mod g)
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Now h{#) = 2?g~*g(Rz), where RA, = A(q, », g), which w1th (2.8) gives

{3.3) h(z) = 2°t"m~1 g~1f (Pe),
where P, = MR, sabisfies
{3.4) - Pd; ={My: ye 4,,(3.2)}.

In the easy case s, ¢, n = 1, 2, 0, we use m | M’ A({f), and (3.2) reduces
to m|f(My). So, by (2.6) and (3.4), P4, is the interseotion of A(m, 1, f)
and the set of @ with m|f(w). This gives P4, = A(m,0,f), which with
(3.3) gives f—(m, 0)h. So we have

(3.5) , —=(m, 0) = —+(m, 1).-+(2, 0).

Next, take ¢ = m, = & Then (3.2) is eagily seen to be satisfied by
Yy = N2, where N = m~1], for every #e A,. Jo if we define.

(3.8) : AB(m, 8, f) = {My: ye A{m, s, g)}

wo have A%(m, &, f) > mA,. (In (3.6), g is detined by (3.6) for 2 chosen —

the choice is clearly immaterial — to satisty (2.5).) So we see that

(3.7) o f(my g (m, @) = h(z) = £'m(Pr),
fl@) = 47*%(Qx), PQ=mI, -PA,=A%m,e,f).
Now we take m and g to be coprime, and note that det M is prime
»" 10 ¢, becanse M., > md, implies (det M) jm". So we may simplify (3.2)

by omitting the factors m™, M'. If we then put @ for My, (3.2) reduces
to : '

(3.8) o 24(flre =0, () = O(modg);

and we gee that PdA, = MA,N (3.8) = A(m,s,f)n (3.8). From (2.1),
(2.2), and g.c.d.(m, ¢) =1 it follows easily that

(3.9) Afmy s, 1)0 (g, e, f) = A(mg, s, f)
for ‘either value of e; and by (2.3) we see that (3.9) remains valid with

Ad(m,1—e,f) for A(m,s,f) if 24m, and similarly if 24g. We may .

moreover omit the factors 2° in (3.8) if 24g; and them we have
(3.8) = A(g, m,f). From these remarks we see that PA, — A(mg, &, f),
{ = max(s, n). Now, by {3.3) and {2.6), we. find

(3.10) My £). (g, 0) = (g, 0),—>(m, ¢) = —(mg, &)
£ gad.(2'm,q) =1 '

4. Monotonicity of the class-number. The cage ¢ — 0 of the following
theorem is included in [1] (Theorem 1),
‘also for ¢ =1, i8 simpler,

- but the following proof, valid

" iom
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ToEOREM 1. The class-number does mot increase under any of the
transformations of § 2; that iz, f—(m, £)g implies e(g) < ¢(f).
Proof. We shall fiest show that

(41) f-r(m,e)g and g =g =f>(m, o)y

From ¢ = g' it follows, see, e.g. [3] (p. 68, Theorem 41), for any ¢ > 0,
that some g"” ~ g is identically eongruent to g’ modulo g. Using this re-
sult, with 2mig¢ for g, we may suppose without loss of generality that
g = ¢'(mod 2m?g) (identically). Now we choose M go that (2.5) and (2.8)
hold, and define f' by . : '
(4.2) @) =27 "m™"g'(N),

for some f' ~f,

with N = mM™! a3 in (2.8); whence clearly f' is identically congruent.

to f modulo mg. Now by the remark following (2.4) we have

‘A('m', &, f') = Ad{m, &,f) = MA,.
It follows thab _
flos(m, )2 m™ 2 m ™ g (N My) = m~2g' (my).= g’

‘We notice that f, f, ¢, ¢’ are all equivalent over the real field, by (4.2),
(2.8) and g =¢'. So ff;of’; and it is easily seen that d(f) = d(f’). Now
there is & g > 0 (which we could take fo be [d(f)|) so that these condi-
tions and f == f'(modgq) (identically) imply f ~f'. For this see [3], loc.
cit. So by choosing ¢ suitably we have (4.1).

" We now restrict the mapping —(m, &) to the set of classes consti-
tuting the genus of f. The image set of classes iy included in the genus

- of g, by (2.11); (4.1) gives the conversg inclusion, and the theorem follows.

The next theorem. is almost a corollary of Theorem 1.

TeRoREM 2. Suppose that either s =1 or 24 m, and that f—(m,e)g.
Then ¢ (g) < 6 (f), where o'(f) is the number of classes; in the genus of f,
that do not contain disjoint forms. e

"Proof. Suppose £irst that j is disjoint, and by renumbering the var-
iables that fis of the shape o

(4.3) @y e @) F e Begas oy Ba)y O<E <.

Define g4, g:, 1p o equivalence, by fi>(m, &gy, i = 1,2; and let g be

the form ' , .
F1(Yay oor W)+ G Wrras -2 Yn) ‘ )

Beoause of the conditions on s, 7, we may appeal to (2.3), disregard (2.2),
and break up (2.1) into two congruences, one involving @, ..., @, the
other my,,;...; Py f—>(m, e)g follows easily, on satisfying (2.8) with M
of the shape diag[M,, M,], M, &k by k M, n—k by n—k. "~

The foregoing argument works also for every f' ~ f that is equiva-
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lent to & disjoint form. So we may exclude clagses of such f' from the map-
ping of Theorem 1; and with this further restriction the image set still
containg all clagses that do not eontain disjoint forms. The theorem follows.
5. The case of equality in Theorem 1. We shall prove:
THEOREM 3. Suppose that f—{m,s)g and f'—(m, e)g. Choose h so

that g—(m, e)h and M, M,, N, Ny, P, P,, @, @, 30 that (2.5)—(2.8), (8.7) hold
as they stand and also with f', My, Ny, Py, Q, for f, M, N, P, §. Then sach
of the following is a necessary and sufficient condition for f ~ f*:
* (i) g has an automorph 8 such that '

By M8y = 0(modm) < M,y = 0(modm);

(i) % has awn automorph U suech that -
(32) - . PUz =0(modm) <Pz = 0{modm);
and these conditions are equivalent respectively to

8N4, = Nydy,  U7Q4, = @i,

Proof. The § of (i) has to have detS = 4-1, since g(8y) —g(J)

gives (cletS)”d(g) = d(g) % 0. Slrmlmly, det U = 1. With this we see
thab

MSy = 0(m0dm)-¢ MByem, = (MS)(S“‘N./I ) = yeSINA,,.

Treating the other three congruences in (o 1), (5.2) similarly, the last asser-
tion follows.

Now assume (i) satistied; §-1NA, = = N4, mlphes 8N =N T,-

for some T with detZ = 1. Now (2.8) and 7y = g(Sy) give f(x)
= 2'm~ gV, Tex), f () = 2'm~ g (N ). These give f'(Ta) = flx), f ~f'.
If we assume (ii) we can argue similarly; so each of (i), (i) is sutticient.
- We may now assumef ~f" and choose 7 so thatf () = f(Tx),
detT = ¥1. As remarked in -§2, after (2.4), this gives A(m, s, f)
=T7 A(m,&;f), that is, M, 4, = T~*M,. So for some § with detS
= 41 we have M, = T-1M8, whence we have (6.1). Similarly, we find
U’ with det T = 41 satisfying (5.2). From (2.6), f (x) = f(Ta), and
M, =T7'M8 we have 27*mg(y) = f(MSy) = f(My), from which ¢(y)

= g(8y) follows and so (i) is necessary, as is (i), by a similar argument.
. As an example of the applieation of Theorem 3, take m =3, ¢ = 0,

and f congruent (identically) to —9a3 +a} +8 (e} 4 ... +o3)(mod 27). Then .

we have f->(3, 0)g—>(3, 00k, with g = —3y1+3y,+y§ . 4k (mod 9)
and b = —d 4+ A +3(2+.. . +2%)(mod 8). Tt is easily seen that h—(3,0)g,
and so three applications of Theorem 1 give ¢(f) = ¢(g) = c(h) We exam-
ine the -possibilities for f with f*—+(3, 0)g and f o2 f
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We appeal to Theorem §; and it is simpler to work with (ii) rather
than (i) and to regard f(a) = k(Qx) as h(#) with the condition Pz =0
(mod 8) on 2. Here § = diag[3,1,...,1], P = 3Q"?, so Pz = 0 is equiva-
lent t0 #, = 0(mod 3), We see that P,z = 0(mod 3) must be consigtent

with k(%) = 1 but not with k(2) = —1(mod 3), else f* ~ fis obviously false. .

Thizs gives w3 P2 =0 <4, = 0§ <Pz = 0(mod 3). Bo (i) holds with
U =TI and Theorem 3 gives ' ~f.
The argument; above depends entirely on the geneno properties of
f) g b So it gives us that if f, o~ f] ~Ff, and f,, fi~>(3, 0)g, (~g), then
fi ~fi. From this we see that o(f) = ¢{g) = ¢(h). And this would still
hold for the same g- and i-genera but with fin a different genus, = —uf -+
+92% + ... {mod 27).
" Now suppose we begin with f = 9% +oi +3(#]+ ...)(med 27).. Pro-
ceeding in the same way, we find that P,z = 0(mod 3) is equivalent to
one of #, =0, z = 0{mod 3), 8o f ~f if » has an auwtomorph U that

interchanges these two congruences; o(f) = ¢(g) = o(k) only if every .

1’ ~F has such an automorph.
6 Repeated transformation, . the general case. We consulel chains
(6. 1) Jea=lmy e)fs, E=1,..,k.

We define f—->I‘ to mean that for some %> 0 there existy a chain (6.1)
with f, ~f and f, ~F; and f < P to mean f—TF—f. Repeated applica-
tion of Theorem 1 shows that f—F and fH.F imply-o(F) < o(f), = o(f).
respectively. Next, f—;lf' (# for Gausgian) means the same as f—F except
for the restriotion ‘

(6.2) e.; =1 for every even my; .

and f>F means f—+1¢‘-+f These two relations are of interest in cannectmn
with Theorem 2.

I follows at once from (8.10), lengthening the chain (6. 1) by factoriz-
ing the mappings, that we can impose the restnchon

(6.3) " oach 2%m, ig a power of some pnme Pis
whenoce s; =0 if my i8 odd, without mffeehng any of the ioregomg defi-

- nitions. Further, we define s and e for each prime p, like — and «, but

with the condition (6.3) and each p; = p. Finally, o» and ¢ ave dofined
lire — and <, but with every & = 1.

By repea.ted usge of (2.6), the end points f, fk of tha chain (6 1)
are related by an identity of the shape

(8.4)  fulm) = 29%+u(my . omy) 7 fy(Vee),  det Viimy...m)".

"If there exists an integer v such that gErte o ()"t = o2, 'and :
V =T, T having integer elements and detZT = 1, then we shall say

12 — Acta Ax'lthmetiéa XXvi, .
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that the chain (6.1) ig closed; if so, fy ~f, and fy & fyfor 4 =1, ..., %,
(6.1) may be called a ¥-chain if it satisfies (6.2), a p-chain if it satisfies
(6.3) with all p; = p, We notice that if we keep the same m,, &, & but
replace f,-by a form f, identically congruent to f, modulo m;... m,, and
"the other f; by suitably chosen forms f;, then we have a new chain satis-
tying (6.4) with f;, fx for f,, fi and with the same my, &, V. So this chain
ig closed it and only if (6.1) is so.

Now sappose-that (6.3) holds and that, for some i <k, p; % p,,4.
Then we may interchange —(my, &) and (..., &,,) by (3.10), replac-
ing f; by some suitable f;, but, see (3.9), not altering f,, i, ov V. 8o again
we have a new chain that is closed if and only if the old one iz 5o, Further,
guppose that by such interchanges we obtain a chain which is » union
of p-chaing with distinet p (placed end to end); it is easily seen that the

original chain is closed if and only if each of these p-chaing is so. For ‘we.
hava for each p-chain an identity of the ghape (6.4) with the numerical fac-

tor and |det V| each a power of p; and on eliminating the unwanted Jofrom
these identities we get (6.4) without any cancellation. .

Using the case & = 1 of (6.4), ges aga.m (2.6}, we seo that if (6 3)
holds then
(6.5) AfiY/A(fioa) B8 & power of p;.

- Now, see the definitions at the end of § 1, we sbate 'aa;d prove:
) Trmorszy 4. (1) f s 'normalized uﬂder —tf and only if it is so wnder s Jor
every p.. :

{ii) (i) above remuing valid wzth "mmma.l’ in place of ‘normahzed’ ‘

L) fie almos't minimal under — if and only if it 48 almost minimal
- wnder re for soms pnme & and winimal under e for every p +~ a

(1v) (i)-(iii) above all remain valid with — 3 for —,. -

Proof. Suppose first that f is normahzed umler ~»; that iy, thab
every closed chain (8.1) with f, ~f Nf,, satisfies |d(f,)| = |&(f)] for 4 =1,
<++y k—1. Beeause of (6.5), this remains true for any p if we restrict (6. 1)
to be & p-chain, so f is normalized wnder - and we have the fonly if!
of (i). Proof of the “f’ is slmlla.r but mmpler and (11)—(1v) are proved in,
the same way.

. When the chain (6.1) is a uynion of p-chains it ean be abbxewaﬁed,
for some 1< %, and with f@ =f,, fO =j,, to

(6. 6) f(i'”—* O d=1,.,0, b for i ;ég

TearorEY 8, (i) f-F if and only if there apists a cham of the shape (6 6),
with f© ~f wnd I® ~F; and if 30, F—f if and only tf

(8.7) o f")—+f("'1) Ci=1,..,0

iom
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(if) (i) above remaing valid with - for —+ and for rY when p; =2,
Proof. As for Theorem 4

7. The relation re s > 2. In this section p is a ﬁxecl odd prime, so,
for any f, there are mtegers a;, 6 such that

(7.1) fNEa,;p g,
bt

We define _

(7.2) w=u(f,p), v=0(f,p)

Then it is ‘well known that « and v are invariant under ~ . Wo next write

(7.3) ‘ F—=(p") 0)2y;

the form F, 50 defined (up fo equivalence) may be oalled the p-adie re-
ciprooal of f ‘We note thnat, for any w > 0,

?124...a,

= min, Max(6, ..., d,).

(7.4) f—>(p ) 0)g =g S‘afp'“"‘f'

In proving (7 4) we may by (2 9), without loss of generality, suppose f
equal to the digjoint form on the right of (7.1). Then by treating this disjo-
int form as in the proof of Theorem 2 the case % = 2 reduces. to the case
n =1, which i easy, see (2.1)-{2.6). It follows at once from (7.4) thab

_ (g, ) —%(g, DY < o(f, p)—u(f, P).

So the non-negative p-adic invariant v—u is non-increasing under rd
that is, :
(18)  fpPe v(l’,p)~u(F,p )< o(f, p) —ulf, 8).
In partioular, with the g of (7.4) for F, equsality holds in (7. 5) if and only
if either w<u or wzo.

In these two cases we can improve. (7.4) to
U i wsw,
\p""F, i wxo
For the first of these, note tha,t f is identically 0 modulo p* and so (2.1),
with m == p%, is vacuous and we may take M = I 'in {2.6). For the second,
suppose w > ¢ by (7.3), then (2.1} implies p**|=, a8 s easily seen from
(7.1); and if we put ® = p¥ % 'in (2.1) and cancel p¥~% we see that (2.1)

bolds if and only if =e A(p®, 0,f). So; looking at (2.6), we have g
~ P U F, (5%) = pP " F,. We next prove

(7.7 F,~(p°%, O)f, Wh«_ance by (7.8) -

(7.6) (e 00 s g~

‘f«?lﬂ,‘.
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By using (7.4) twice over, and noting that [v—|v—e| = |, we find
% chain o '
(7.8) o o2, OB (27, 0)6,

with & @ for ‘which Gr;f is obvious, but @ ~ f is needed for (7.7). Now

G ~ f is immediate in the special cagse f == f, f, being the right member
of (7.1). So by the arguments following (6.4) it follows from the weaker
hypothesis f == f,(modp*) (identically); and this hypothesis is easily
seen to involve no loss of gemerality. Alternatively, (3.7), with m,e
=p" 0, gives f = G(Q#) with |detQ| & power of p, 80 =1 because of
fr; @, and again we have (7.7). From (7.6) and (7.7) it is easily seen that

(7.9) I of.
We now state and prove:
TuwoREM 8. For every odd prime p, with the notation above, we have:

i) f HF if and o'nly if either B Np'f or li‘~p'15' holds for some

integer 3
. (ii) fis normalized under —-if and only 1f %= 0andg,+...+ [ %nv,
(m S 18 minimal under e ':,f and only if v—u = 0 or 1;
(iv) f 18 almost mwwmal under e if and only if either () v—u = 2
or (b)v~-u = 3 and none of the ¢, = u+1 or 4 42;
{v) for every HF - F holds fm some I which iz mmzmal under e

(vi) for every pair f, F as in (v) but with I not minimal, f-> g—-;-lf’ For
. some almost minimal g;

(vii) if «, B are the numbers of aven, odd e, in (7 1) then ]a—ﬁl 43 3n-
variaht under re

" Proof The 4£ of (1) is dlear from (7.7), (7.9) and the tra,n.smnty :

of o
It is ea.sy to seo that the p- adm reciprocals of pf, ¥, are F,, p~*f re-

- spectively, so the conditions to be proved necessary (for the ‘only if’ of -

(1)) ave unalfered by replacing f by the g of either cage of (7.8)., On the
other hand we have v

(7.10)" I=(9%, O)g —+ h and u< -w< v imply A ++f

For on going from f to g the exponent differsnce v—u undergoes a de-
orease which by (7.5) cannct bs- made good on further mappings, from g o
h and then to f. Construeting a p-chain from f to F and back to f, an easy
induction on its length completes the proof of 1).

For (ii) we note that, by deflmmon, fis norma,hzed under - if emd

a8 in § 7.
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only if |2(f)| < |4(F)} for every F “ 1 Usmg (1), it evidently suffices to

“take F = p~%f or I'y; then d(f)/d(.F) * or p°, with 5 = v —2¢, ...+

+2—2¢,. This gives the result.

For the ‘only if’ of (iii), supposing v—u > 2, we choose w with = < w
< o, and then (7.10), with any &, say % = g, gwesf—» h+>f and so f is not
minimal. On the other hand, if »—w =0 or 1, (7. 6) is always applicable

and with (i) gives f—(p"”, g-—.’fﬂ g for every w, From this the ‘if’ of
(iii) follows.

In the proof of (iv) we may by (iii) assume that v— %2 2, and then'

from the definition in § 1 it follows easily that f is almost mmlma.l under
— if and only if there exists no w for which F—=(p", 0)g implies g7 I

a.nrl ¢ not minimal under < Using (iii) this means that we cannot ha.ve

1 <o(g,p)—ul(g, ) < o(f, p)—u(f, p). Using (7.4), this pair of inequa-
lities can be expressed as : '

(711) 1< maxlw—‘e.;[—min|w—-e,}< v —u.

‘Now w = w+1 satisfies (7. 11) f v—u>4, 80 su;pposmg v— u<3 and
noting that (7.11) implies %< w < v the proof of {iv) is easily completed.

(v) is trivial if f is minimal, and nearly so if f iz almost minimal;
the comstruction for (iv) gives an induction on v—w in the remaining
case. (vi) follows easily from (v). For (vii) we look at (7.4) and note tha,t

IW 61" — ]w Gjl = Gg—ﬂj(mOd r))
8. The relations 3 —; « For p =2 we have to repla,ee (7.1) by
(83) f"’zoﬁ'u{wz’}-zzjej Doy2j-15 +2j): ‘

=l =1

. where the §; are binary forms with odd diseriminants, the cu, are odd inte-

gers, and -+, ¢ are non-negative integers with »+2p =n. If we write
(8‘2) E . ey.[.zj_] = 3,+” == fj -1 fOI' j = 1,,_-.‘.,‘9, .

then we can define % = u(f, 2) and » = (f, 2) just as in (7.2). We. define
the 2-adic reciprocal of f, of. (7.8), by

(8.3) F+(2%,1) 7,
001'responding to (7. 4), and proved in the same way, we have

(8.4) f—(2"F 1)9*9""22'”—0"“ @f + 22|w+1—r,l+191< Bypag1y: “’vuj)
= =t

From this and (8.2) wo 568 that we have

ai(g) = lw—e;(f)]

O ek T gy e AT e B e
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* The form f may be called Gaussian if its product terms all have even
coefficients, or eqnivalen’r.ly if 9] 4 (). Clearly, by (8.4),

(8.5) =2, L)g=>214(g).

This shows that we lose nothing Ly considering Ganssian forms only,
for the rest of this seotion. For such forms it is easily seen that (7.5)-(7.9)
Lold good with 2 for p, —(2°+, 1) for —~(p%, 0), 53 for —> and g iore.
We also have

TrmorEy 7. For Gaussian forms, Theorem 6 remaing valid for p = 2,
if e and o are replaced by -2, 42 -

Proof, Because of the remark following (8.4), we can argue just as
in the proot of Theorem 6. The restriction to Gaussian f ensures r; > 1,
=2 0,uzz0. :

Theorems 4-7 can be used to deduce what we need to know about-.
In particular, we have

TuxworEM 8. Let [ be an n-ary positive-definite quadratic form with

‘mtegcr coeffmcnts such that every class in the genus of f contains & disjoint

form (that 48, &' (f), defined in Theorem 2, is wero). Then there exists a equare-
fres integer g and n by n matrices B, 0, eaah with integer elements, such that

¢ = gB™!, detBidetC, and the Guussmn form o' Bx sa,t@sfws all the oon--

ditions imposed on f.

Proof. By Theorems 4-7, there exists & form J' with f?li’ and 7
_normalized and minimal under 3 . Replacing f by 2f if necessary, and
nsing (8.5), ¥ is Gaussian, so B = }A(F) has integer elements, ¢ = ¢B!
algo has juteger elements if we define ¢ as the least common denominator
of the elements of B~L. By Theorem 4, F is normalized and minimal under

e for every p > 2, and under -’;; Usmg (il) amnd (iii) of Theorem 6, and -

Theorem ,this gives ¢ = 0,2 < 1, e, +...+¢, < }n, for each p. It follows
easily tha.t q is square-free and detB ldet C. Repeated application of Theo-

tem 2 shows that ¢ (F) < ¢'(f), so ¢ (F) = 0 and this completes the proof.-

I hope to use Theorem 8 later tio prove the

CoNIECTURE. For given n there exisis o form f samfymg the h'ypotheses

of Theorem 8 if and only if 2 < n < 13,

1 have proved this econjecture for large » in an unpubhshed IMANUS-
cript, using Siegel’s formula for the weight of a genus, and Theorem 8;
for @’Ba as in Theorem 8 the weight formula becomes considerably simp-

“ler than it is in general.

9. Statement of results en —-. Clearly, for every f,

R f(1,1)2f~(2,0)f, whenee [ 27,
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for 7 = 0; and pufting in factors 2 to avoid‘e.omplioa,tion with non-Gaussian
forms we have fvivially

(9.2) 9f o5 AP ~f > F.

We therefore have (using Theorem 7) & necessary and sufficient condition
for f < IV if wo can determine all the sases in which

(9:3) o F is true but 2f 3 2F is false.

' We write [a, b, ¢,...] for & djagoné.l form with coefficients a, b, ¢
. and y, for the sum of the 6, in (8.1) with #; = r, ¥ =0,1,... Then we
can abbreviate (8.1) o

(9.4) fr; [2%a, 2%0,, .. ]+ o+ 29, 4y, 4.

Tt will sometimes be convenient to put in one or two 0'x after 24, or

- to put +2°y, after ... thereby indicating that v, is identically 0 for all

¥ > g, and possibly a.lso for some or all of the r < 5. .
With this notation we give examples to show that (9.3) is possible.
Bach of them can, with m =2 or 4, be written in the shape

(9.5) Jo>(m, 1) f1—+(2,0) fo>(m, 1) fo->(2,0) fo,

(98) fir(am,1) Yer@m, 1) fry  Se(2m, 1) 2y (0m, ) oy

(0.1)  fifyslways, 2f19f only i (i,5) = {0,1} or 2,8}

ExaMPLE 1. Take m =2 and a=b=a"=b"= L1 or a,d

= 4+1,F83, a', b’ = F1, 43, and let fo, ..., s be

[a, b3+ wo 429, @, BI+4ye+2yy,
[, b1 +2y+yus  [075 0 142y +Hdyr.

It iy easy to veufy (9.5) and (9.6), whence the firat part of (9.7); and
we note that f,, f sre the-2-adic feciprocals of fo, f,- Using Theorem 7,
if the second half of (9.7) is false then 2°f, Y fo or fy, for some o which is

obviously 0. The first slternative gives u, = , = 0. The second can

.be excluded by choosing w,, v not to have the same number of variables.

EXAMPLE 2. m = 4, a5 0d4, 6y, 6, each odd or 0, fo, ..., fs =
(ay) Gay 285]+ w0 +24a +hya, (204, 20a, G +8¥o 4y, +2y,
(61, Gay 205] Fowo+2uy +95,  [20a, 205, 05129 +4y; +8y,.
It can be shown exactly as in Exa.mple 1 that this gives all we réquire,

exoept possibly the second half of (9.7), which, crudely, can fail only if

wp and 1/)2 have equally many va.rmbles

St s s v
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More genevally, with fy, ..., fa 83 in either of these examples, (9.3)
holds if there exist ', 7' such.that

(9.8) of 2of, 2FG2F, [, F ~fo,fe

THEOREM 9. (9.3) holds only if there ewist f’ F' satisfying (9. 8), with
fos [z a8 in Evamples 1 and 2. .

It may be noticed that the conditions on a, b, a’, b’ could be weakened
to ab = 1(mod 4) and &', ' = +a, 1b, with the + or — sign according
as ab =1 or —3(mod 8); and then by symmetry (interchanging i, and
) Js and f, can be interchanged in (9.8).

THEOREM 10. To every f there corresponds an F such that f—F and F
e minimal under —. A form tg minimal wnder —- if and only if % is 2-adi-
cally equivalent io a mnlt'aple ef one of the followmg

(1) po+2y15
" (i) the forms fyy ..., fs of Bxample 1 above; .

(i1i) the foy +..,Ja Of Ewample 2, with ay = 0, a;a; 0dd, and y, = 0;

(iv) the fo, ..., fa of Brample 2, with ay = a, = 0, ay odd, and y; = 0.

In case (i}, o+29—>(2, 0)2%,+ 9.~ (2, 0)y, +2y1, 30 wo+2y; is
normalized only if its discriminant does not exceed that of 2¢,--v,, that
- is, only if y, has at least 4n wvariables. Similarly, the normalized forms
can be picked out in cases (ii)—(iv).

THEOREM 1. f is almost minimal under — if and only i there emist
Iy B such that f <> f' ~ P and F is one of _

(9.9) . [al4+wo+29i-+4py, Pope 0, and either a =0 or 4fa;
(9.10) [a,b0]+wo+2va+aps, wova 30, ab =1 or 2(mod 4);
(9.11)  [al+wo+8vs, oys # 0, and sither a = 0 or 2fa;
(912) [, b]+90+8ps,  wows #0, b =1 or 2(mod 4);

€9.18) - [al+yo+2p, @ £0, © Afa,  gr=0 if 2]a;

(

9.14) (1, 6]+ y+2y;, o= —1(mod4);

(9.18)  [2a,40]4pe 2y,  ab =1 or 2(mod 4);

(9.16) : {a, 48] +29, +4y,y ab = 1{mod 4);

(9.17) : [1,a,2b] 420, +4yp,, 2fab;

(9.18) [1, —1, 28, 2]+ 9ys+4ps, @b = 1(mod 4); :
(919) . [4,8b]+2pi+dya+8y;, 2fab, gy =0;

(020) (1, —1,4al+2y+4ps+8ys, 2ta, wipy =0;
(0.21) - [1, —1, 2a, 401 +29; +4p,+8yy,  27ab, iy, =0.
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If f is not mindmal, f— I, and I is minimal, then f—? g F for some g whioh
is almost minimal under —-. .

10. Proof of Theorems 9-I1. We need to normalize (8.1), and (9.4),
by making » as small as possible. To do so, note that, for odd g,

(10.1) (1) 83 B3] [4+ 4y + 641426,

with @(0) = —a,a90(%; + a3+ a,). This gives us that we may suppose
no three of the ¢; equal, or more precisely

(10.2) K. K6, o<e,, I igr-2,n<..<r7,

With this condition it iy eanily seen that

103 BIA()  and  f(2, b=ty
where . _
{10.4) by =0, 2a2, or $0,(23+@) +}e,9},

according as the number of zero ¢, .is 0,1, or 2; and A, is derived from
the right member of (B.1), or (9.4), by omitting the terms with odd coef-

ficients and dividing the others by 2. In the third ease of (10.4), if a,a, -

= —1(mod 4) ‘we have h, =20, d(G) 0dd; but i a;ay = L(nod 4) then
h1~ &+ (0, &) + a,03), with the sign + or — a.ncordlng a8 4 4y =1 or
—S(mod 8).

It will be convenient to postpone the proof of ’l‘heorem 9.

Deduction of Theorem 10 from Théorem 9. For given f,

suppose f—(m, e)g, m & power of 2. Then the possibilities for g up to
squivalence can be found by using (3.5) and (7.8); there are infinitely

many, bub i we write ¢ = 2"h, 7> 0 and ‘A 2-adically primitive, then

there are ouly finitely many possibilities for A.

In particular, taking f to be 2-adically equivalent to a form of one-
of the shapes (i)~(iv), we find either & ~ f or #,, see {7.8), or % aquiva-
lent to one of the other two members of the quadruplet of Hxample 1

‘or 2 to which f belongs. In each case h—~fis clear, so fogoh—of, 4y,

and f is minimal. So by (9.1) iy 2"f, # > 0. This proves the ‘if’ of the theorem,

Now, starting with any f, a sufficiently long chain (6.1) with map-
pings ~(2, 1), -»(2, 0) alternately gives f—>g, for some gNg ) g one- of
(iY~(iv). This is easily verified, and using the ‘if’ it gives the fust assertion
of the theorem. Specializing by taking f to be minimal, f—>g lmphas g—>f,
and so Theorem 9 gives the ‘only if’.

Deduction of Theorem 11 from 'l‘hcorems 9, 10. Letfbn.

one of the forms'that we have to prove almost minimal; whence by Theorem
10 wé see that fis not miniinal. Proceeding as in the'ﬁa'st pazt of the proof
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above, wé find that f-=(m, &)g, m & power of 2, implies either g for

g minimal. Clearly thig is also implied by f->g, and so fis almost mlmmal
This gives the ‘if’.

For the ‘only if’ suppose f not minimal; then f—; ¢ for one of the g that
have been proved almost minimal. This is more subtle than the correspond-
ing argwment for the ‘only if* of Theorsm 10; bub I leave it to the reader
with the remayk that it suffices to use —(2,0) and — (2%, 1), w 3.
Now if f is almost minimal, g~ f, f ¥y, and Theorem 9 gives us the ‘only if’.

The argument just used will not prove the remaining assertiom,
beoanse F has to depend only on f, not on g. We oonstruct & chain under <
with each link irreversible:

{10.5) fi-:?fi";”fi—u t=1,00k
fo=1 Jageeey fumg 8l norma]ized, fo = I

for given f, F satisfying f—F,F' minimal, f not so, whence k21, and

the f; are pairwise inequivalent. If, for fixed f, F, k is bounded we choose

the chain (10.5) to make % maximal; then g = f;_, gives f—; g»;rlf’, g almost
minimal. S¢ suppose %k unbounded. Since there are only finitely many
clagses with given d, d(f,) is unbounded. So, with «; = %{f;, 2) and
=(f;, 2) agin (7.2), (8.2), and u; = 0 by (10,5), »; 18 unbounded. Itis however

eagily seen from (3.5), (8.4), (10.3) that max(2,v—wu) i non-increasing -

under . 8o we have a contradietion which complebes the proof.
For Theoram 9 we need some further prehmma.nes ‘We define

(10.6) ' celf) =e,—e, (=0 ifv=0),'
{10.7)  €(f) z max{eﬁ—i ——=rj: 1<y, i<} (.m 0 if vo =0),
{10.8) ' () =rp~r (=0 1if o =0y,
" From (8.4) wo seo that '
(10.9) (2", Dyg=+(g) < 2(f), elg) < elf),

and if »(g) = »(f), then also gl <e (f), () < e"(f).
From (10.3), (10.4) we have

{10.10)  2[A(f) and F>(2, 0)h=» h)-\v(f),e(h e(f),
and it v(h) = -u(f), then e”(h e ().
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Now congider the possibility
(10.11)  21A(f), 24F, f>(2, 0%y v(h) =5(f),
e(h) = o(f), &' () = o(f), ¢ (h) = 6" (f).

Straightforward oalculation shows that (10.11) Jmphes that the invariants
of f satisfy

(10.12) >0, ¢ =0, <1, r,<2(org "'0),
and if »>2 and e, =0, then » =2 and a,4, =1{mod 4),

Now, supposing bird 2, we have & closed chain

- {10.13) o S @9 )y =100k fu=l,

with two of the f; = f, F respectively. Factorizing the mappings with

-8, = 0 by (3.6), and noting that g =1 1mphes 2| A(f;), see (8.4), we may

suppose that
(10.14) & = 0 only if w;, = 0 and 2]4(f).

Looking at (10.9), (10.10) we see that the chain (10.13) cannot close unless
v, ¢ and ¢ have the same values for all its f;. From the constancy of v
and Theorem 7, we see easily that 2f;_, ¢ 2 2f; whenever &; = 1; also, trivially

whén f;_, = 2f;. Suppoging therefore fthat 2f < 2F is falge, one of the

mappings of the chain has to be —(2, 0), w1th Joor # 2f;. Choose such
a mapping ‘with ¢ (f;) — &' (f;_,) maximal, and so non-negstive; and obvio-
usly there is no losg of generality in supposing f; , =f. Writing » for
fry (10.11) holds, and (10.12) follows.

This leaves us just a few sxmple cages in which it i8 easy to find all

the F with f < F and so eomplete the proof. It becomes still easier if we

assume that fi is the 2-adic remproca'l of f,., whenever g = 1; and thz.t
assumption 8 easily justified.

I1. Conclusion. For any f, with matrix 4, we have .
f->(detd|,1)g, - where g(y) = y'(adj4)y,

whence using adj(adjd) = (detA)""A we see that f++g. Hence the result,
mentioned in § 6, that feg=o(f) = ¢(g) may be regarded as a generah-
zation of the classical result that equivalent forms have equivalent adjoints,

From a ‘family’ (union of classes) of forms pairwise related by« it is easy .

to pick out the normalized ones, that is, those with smallest |d]. And
given any representative of the family, normalized or not, it is easy to
construct the whole family. Since f+af for every f and every ¢ > 0, it
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i3 convenient to omit the imprimitive members of the family, leaving
a finite union of classes. For these remarks see Theorems 4-9.

I now outline an approach to the problem of finding, for given =, all
the n-ary posiive-definite quadratic forms with elass-number 1. Suppose
3> 2, since m =1 is frivial. Consider only normalized forms; this
shortens the labour and makes it less difficult to present the result in
 Teasonably conecise form. With these preliminaries we may proceed by
three steps. _

Step 1. Find all the (classes of) positive-definite n-ary forms F
with ¢(F) = 1, F minimal and normalized under —.

This seems hopelessly difficolt for » = 2, but I have done it for
nz 3. For n > 11 there are no possibilities; for n = 8, 4 see [4:], [8].
For b n< 10 see [6].

Step 2. Find all the positive g with ¢lg) =1,¢ normalized and almost
minimal under -».

Theorem 4 (iii) (with g for f) shows that the arithmetic propertios
of the g lers considered are not much more complicated than those of the
I of Step 1, so the methods used for Step 1 are still available. It helps
further to note that there must be & minimal F with g—F (see Theorems
B(i), 6(v), 10) and Theorem 1 gives ¢(F) < ¢(g), 80 e(F) =1, and the
possibilities for # may be supposed known. They may be takern one by
one if convenient. For many ¥ with o(¥F) = 1 we find no almost minirhal g
at all with g—F and 6(g) = 1; but in any case we find an upper-bound for
the ‘bad’ prime g of Theorein 4(iif), for which g is almost miniral under e

Step 3. Find all the posifive f with ¢{f) = 1 that are normahzed but
. neither minimal nor almost minimal wnder —.

As in Step 2 we choose F, minimal under -», so that f—F. Then,
Theorems 5(i), 6 (i), 11, we have f—g->F, ¢ almost minimal; and we may
¢hoose g to be almost minimal under — for any prime ¢ for which f is not
minimal under —> . Theorem 1 shows tha.’r, ¢(f) = 1implies ¢{g) = a(F) =1;

50 by Step 2 we have finitely many possibilities for g, f, and f mmuna.l ’

under e for every p that is not among the possibilities for g.

JIn the references quoted above for Step 1 the mnotation and results
of [1] are used, and so should be.related to those of this paper. In [1],

f 18 strongly primitive (SP), if, for every p and some # 3> in, f has an

- peary section f/ with ptd(f). I‘urthel y f 18 square-free (SF) if it is p-adically
ST for every p; and the definition of a p-adically S8F form implies that
fis p-adically SF if and only if f—{p, 0)g—(p, 0)% implies % ~f See
[1], p. 584, Lemma 6.

Now f is minimal and normalized under — if and only if it is BF and
SP. When f iy minimal under — but not normalized, it ig not negessarily
SF (because, see Theorem 10, (9.4) may have & non-zero term 4,).
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