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k1. Introduction

‘THE investigation of the class-number, that is the number of classes in
k the genus, of a quadratic form with integral coefficients can sometimes
be simplified by considering another form with simpler properties. For
L example, it is well known that reciprocal forms have the same class-
fnumber, because equivalent forms have equivalent reciprocals. For
another example, see (1). Here Jones considered a ternary form
f=f(xy, x5, 25) with the property f= ax,® (modp) identically in the
-varlables where p is prime, pt 2a; and showed that the class-number of
buch an if is not less than that of g = p='f(px,, @, 2;). This is useful
 because the discriminant of g is numerically less than that of f. Both these
Eresults are included in Theorem 1 of this paper.

_ Magnus showed in (3) that every positive genus of n-ary forms contains
Iat least two classes if n>35. I shall show, in a paper under preparation,
fusing the results of this paper, that a positive spinor-genus with n>11
balways contains at least two classes. The constant 11 is best possible.
IThe spinor-genus is introduced mainly because it does not seriously
'comphcate the argument; for an account of it see Ch. 7 of (4).

_' The present paper is pubhshed separately because the arguments are
different from those of the forthcoming one referred to above, and
because the results, which seem to be of some interest in themselves, are
 valid for indefinite as for positive forms. Unfortunately, however, they
seem to have no interesting applications as far as indefinite forms are
‘concerned.

| The notation is based on that of (4), but a somewhat algebraic approach
' seems desirable, and calls for a number of further definitions and symbols.

2. Definitions and statement of results

For any positive integer n, A, denotes the standard lattice in
# n-dimensional space; we use the word lattice as in the geometry of
E numbers, not as in abstract algebra. A, will be regarded as consisting
of column vectors X,y.z,t.X = {¥,,....%,}

Lb with integral elements. Latin

E capitals will be used to denote n by » nonsingular matrices with integral
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elements; the determinants |7'|, |U] of 7', U will be restricted to the
values +1.

Now let f=f(x,...,%,) =f(x) be a quadratic form with integra]
coefficients (i.e. taking values in A, for x in A,). The countable sct of all
such f will be denoted by Z(n). Asin (4) we write

fl@)=§xAx, A = A(f) = (0*f[0;0)); 51, 0> (2.1
noting that this gives
fx+y) =f(x)+y 4x+f(y), (2.2)
and we define the discriminant of f to be
| A} (n even),

(=
)= H(~1)in# 4] (nodd).

This makes d a polynomial, with integral coefficients, in the jn(n-+1)
coefficients of f (see (4) 3).

The class of f, that is the set of all forms f7 = f(T'x) with 7' as above,
will be denoted by (f). We shall denote by #(n) the set of all (f) with f
in & (n). The genus of f, a definition of which will be given in the proof
of Theorem 1, is the union of a finite number, which we shall denote by
Hoo(f), of classes. It may also be regarded as the union of AL(f) =.2ﬂ
spinor-genera. Here 8 = B(f) is a non-negative integer which is easily
calculated by studying the congruence properties of f; see (4), loc. cit.
The spinor-genus of f, which will be defined in the proof of Theorem 1,
is a union of A, (f) <A, (f) classes.

We shall study the structure of the set () by mapping it onto itself,
and onto certain proper subsets; under all the mappings the numbers
Nys N gy N s aTe non-increasing, and the signature is invariant. They all
depend on the sub-lattice A,,(f) of A, which we now define.

Let m be a positive integer; the case m = 1 is trivial but need not be

excluded. Define A, (f), for fin & (n), to be the set of all x in A,, with
f(x+z) = f(z) (modm) forallzinA,. (2.4)

Trivially, m|x implies (2.4), so A,(f) is n-dimensional; and if x,y are
both in A,,(f) then so too is x—y; so A,(f) is a lattice, included in A,
and including mA,. Hence we can choose M (any n-by-n matrix whose
column vectors form a basis of A,(f)) so that x is in A (f) if and only if
x = My, yin A,. If one possible choice of M is M = M, then all choices
are given by M = M, T, T as above.

Now write

g = gulf) = m7f, (2:5)
ie. gy) = m~1f(My), and note that, by (2.4) with z = 0, and the choic®

TRANSFORMATIONS OF A QUADRATIC FORM A79

of M, mif(My) foryin A, sogisin . F(n). (y)is uniquely determined by
m and f; and g can range over the whole of (y), by the remark above
regarding the choice of M. (g) is determined by i and (f), because if we
replace f by the cquivalent f7 we can obviously replace M by T-1 M,
giving the same ¢. So if we say that the m-mapping is the mapping
(f)—>(9), it is clearly a well-defined mapping of €'(n) into € (n).

The mappmg is onto because, for every f; in F(n), (mf,) maps into (f,).
(For f = mf,, (2.4) is trivial and we can take M to be I, the n-by-n identity
matrix.) The mapping clearly preserves the signature; and g is non-
singular if f is so.

In order to define the subsets of % (n) mentioned above, it is convenient
to introduce 0- -ary forms, with the convention that Z(0) consists of a
single form, which vanishes identically but has discriminant 1.

No.w let p be any prime, and consider forms, in & (n), of the shape

Silxy, 2 )+ij1 Z buxlxﬁ-pfz s - T ), (2.6)
1= ] 74
Wlth fiin ./' ), fo In F(n—r), and integral b;;. With the convention

regarding 5’(0) every fin & (n) is trivially of the shape (2.8), with r = n
and an empty double sum. We may therefore define r,(f), the rank
modulo p of f, or of (f), to be the least r for which (f) contains a form of

the shape (2.6). We shall say that f, or (f), is strongly primitive if f is in
#(n) and 7,(f)=4n for every prime p. (2.7

The strongly primitive subsets of %(n), %(n) will be denoted by

F+t(n), €+(n). ‘

We shall see (Lemma 5) that r,(f) could alternatively be defined as the
greatest r for which f has an r-ary section with discriminant not divisible
by p. With this, (2.7) means that f, if strongly primitive, has a section, in
72 §n variables, with discriminant prime to d(f).

Next we say that f, or (f), is p-adically square-free if (f) contains a
form of the shape (2.6) with 21 d(f1)d(fs); and square-free if this is so for
every p. To explain the terminology, note that, for odd p, the diagonal
form a, T+ ... +a,x,? is p-adically square-free if and only if p? divides
none of the a,; or see (4.1) below. The square-free subset of €(n) will be
denoted by 2(n), and the strongly primitive subset of 2(n) by 2+(n).

We now state the five theorems to be proved.

TaeorEM 1. The numbers A, s HNegr e Ao mot increase under the -

mapping, and the rank and signature are invariant.

(The rank is » if d #0, or f is non-singular; we might assume this but it
I3 slightly more convenient not to.)
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TuroreMm 2. The modulus of the discriminant does nol increase wndey
the square of the m-mapping, under which 2(n) is tnvariant, and the v, do
not decrease. Moreover, if the square of the m-mapping takes (f) into (¢)
then f = ¢! for some H with integral clements, i.e. ¢ represents f.

THEOREM 3. The subset of €(n) consisting of classes of non-singuluy
forms maps onto 2(n) by a mapping under which N, N, N, and ||
do mot increase, the signature is tnvariant, and the r, do not decrease. The
restriction of this mapping to 2{n) 1s the identity, and if it maps (f) into (¢)
then ¢ represents f.

(Note that (f) in 2(n) is necessarily non-singular.)

TarorEM 4. 2(n) maps onto 2+(n) by a mapping whose restriction to
2+(n) 18 the tdentity, and which has all the invariant and monotonic properties
of Theorem 3. If this mapping takes (f) into () then there exist m, positive
and square-free, and J, K, with integral elements, such that JK =ml,

=m~f/, and f = m1gK.

THEOREM 5. If (f) is in 2(n) or tn €t(n), with d#£0 and n#2,
then the genus and spinor-genus of f coincide; that is, A (f) =1 and
N ) = No(f)-

It is known, see (4), Theorem 63, that A, (f) =1 for f in F(n) if
n23 and f is indefinite and non-singular; this is why the application
of Theorems 1 to 5 is mainly to positive forms.

We here deal briefly with two points mentioned in the introduction.
First take m = +2]A4|. (2.2) and (2.4) imply m| 4dx, giving x = 2(adj 4)y,
y in A,. Conversely it is easily verified that this implies (2.4), so we take
M = 2adj 4 in (2.5), giving g(y) = +y'(adj 4)y, a form clearly reciprocal
to f. And by a similar argument we see that (g) maps into (f). The
property of reciprocal forms mentioned in the introduction thus follows
from Theorem 1.

Next, we note that the special case considered by Jones is essentially
that in which (2.4) holds for all z in A, if it holds for z = 0. For general
f, f(x)=0 (modm) does not define a lattice, and so Jones’s method will
not work.

3. Properties of the m-mapping

With the notation of § 2 for n-by-n matrices, we define P~() to mean
P = TQU for some T, U, and prove a preliminary lemma. '
ODIfIMi= +1 (modm) then M =T (modm) for some T'.

(ii) For every P we have P~ D(P), for a unique diagonal D(P) whose
diagonal elements are positive integers, each dividing the next.

Leyya 1.
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() If UM A P are coprime then D(PMY = IXM) D(P) = D(P) D(M).
(iv) With the hypothesis of (iii), MV = PM implies V ~ P.
Proof. (i) See (4), proof of Theorem 41,
(i1) See (2), Theorem 26.2.
(iif) An easy corollary of the result just quoted.
(iv) | V]| =|P|is also prime to | M {, so (iii) gives

D(PYD(M)y=D(PM)=DMV)y=DVYDM), D(P)=DV), V~P,

We use Lemma 1 to prove the properties of the m-mapping that we

shall need.

LeMMA 2. With the notation of (2.4), (2.5), and Lemma 1, let P be o

~ matriz with | P| prime to m, and let the m-mapping take (f) into (g). Then:

(i) For suitable fin (f) a diagonal M can be chosen.

(1i) There exists N such that M N ml and x in A, is in A, (f) if and
only if m| Nx. " '

(1ii) If there exists @ with Q=P (modm) and QM = MQ (implying
QN = NQ) then Am(fP) = Am(f)'

(iv) (fF) maps into (g*) for some V ~ P; for suitable choice of ¢ in (g),
(f?) maps into (gF). ’

) (f7) maps into (g

(fF) maps inio (gF).

(vi) For every prime p, A, (f)2 A

P) for some W~ P; for suitable choice of f in (f),

mp([) 2PN (f)-

(vii) If g is a positive integer prime to m then the m-, g¢-mappings commute
and their product is the mg-mapping.

Proof. (i) It is clear from the definition of the m-mapping that by
replacing f,g by equivalent forms f7,9% we can replace M by T 1 MU,
which by Lemma 1(ii} is diagonal for some T, U.

(ii) The choice of M is such that x, in A, is in A,,(f) if and only if
M-1xisin A, that is, if and only if m{mM~-!x. This must hold whenever
m|x, since then (2.4) is trivial.

(iii) From (ii) it is clear that A, (fP) consists of the x in A, with
m| NPx=NQx = @Nx=PNx (modm); and with m prime to |P| this is
the same as m| Nx. ’

(iv) Using (i), we suppose M diagonal, since it clearly makes no difference
if we replace f,g by equivalent forms 7,90, and P by the equivalent
T-1PU. Now choose a diagonal @ with |Q|=!P| (modm), and we clearly
have QM = MQ and P=QR (modm), for an B with |Rj=1 (modm).
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Using (i) with R tor M, P=Q7 (modm) for some 7. Again replacing p
by an equivalent matrix, P=¢ (modm), QM = M. Now using (iii),
(ff) maps into (m-1f0M) = (¢*), V= M PM. V has integral elementg
because mV = NPM=NQM = NMQ = m@) (modm). Now MV =Py
gives V' ~ P by Lemma 1(iv). For the second part of (iv), replace ¢,¢", I’
by the equivalent g7, ¢* ", T-1 VU, and choose 7', U so that T2 VU = P,

(v) The proof is the same as that of (iv). It is not asserted that (f'7) is
the only class mapping into (¢¥); this in general is not the case.

(vi) The first inclusion is trivial. The second means that if (2.4) holds
then also f(px +z}=f(z) (mod mp), for all z in A,,. This becomes obvious
on using (2.2).

(vii) This is trivial.

We now study the square of the m-mapping. Obviously-this involves
consideration of the lattice p,(f) of all x with

x =My, yinA,(g)=A,(m /). (3.1)
Using (2.4), with g for f, and Lemma 2(ii), we can replace.(3.1) by x in A,
and m|Nx, f(x+Mz)=f(Mz) (modm?), all z in A,,. (3.2)

The first of these conditions is implied by the second, with z = Nt, which
gives f(x+mt) =0 (modm?) for all t in A,, whence m?|f(x), m| Ax using
(2.2), these giving (2.4), or x in A,,(f). Hence p,(f) is the set of x in A,
with F(x+t)=f(t) (modm?) forall tin A,(f). (3.3)

Lemma 3. (i) m|x implies x in p,,(f).

(ii) If, conversely, x in w,(f) tmplies m|x, and p\m, then x in p,,(f)
implies mp | x.

Proof. (i) Using (2.2), it suffices to show that t in A,,(f) implies m| At;
but (2.4) with t for x gives that m divides f(t) +2'4¢, for all z in A,.

(ii) It follows easily from Lemma 2(vi) that pu,,,(f) is included in w,,(f),
80 X in w,,(f) implies m|x, hence also pix, by hypothesis. Now we see
that u,,,(f) is the set of x = py, with y satisfying

Fflpy+t)=f(t) (modm?p?) foralltin A,,(f). (3.4)

We have to show that (3.4) implies m|y. It is enough to show that (3.4)

implies m|y when it is modified by restricting t to be in pA,,(f), which
makes it weaker by Lemma 2(vi). So modified, (3.4) becomes
Sflpy+pzy=f(pz) (modm?p?) forall zin A,(f).

Comparing this with (3.3), assumed to imply m|x, the conclusion m|y
follows on cancelling p2.
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4. The p-mapping

We examine the case m prime of the m-mapping more closely.

Lemma 4. For fin F(n), each of the following properties implies the other
wo: (i) x in AL(f) does not emply p|x; (ii) r,(f) <n; (iii) p|d(f).

Proof. First assume (i); then clearly there is an x in A, (f) whose
elements have greatest common divisor 1; so replacing f by an equivalent
f7, with suitable 7', which does not affect (ii) or (iii), we may assume that
{0,...,0,1} is in A (f). Looking at (2.4) with m = p, and denoting by a;;
the coefficient of z,x; in f, this tells us that p divides all the a,,. Hence f
is of the shape (2.6) with » <n, and (ii) follows by the definition of 7,,(f).
(iii) also follows by the remark following (2.3) (each term in the expansion
of d clearly has some q,;, as a factor).

Now we assume (iii) and prove (ii). Using Theorem.35 of (4) if p = 2,
or simply transforming finto an equivalent form congruent modulo p to
a diagonal one if p#2, we see that for some P with p +|P| we have fF
independent of z,, modulo p, or r,(fP) <n; r,(f) <n clearly follows.

We deduce:

LemMA 5. For each prime p, every (f) in €(n) contains an f of the shape

r k :
Sz, )+ Y B byx w4+ 0fe(Tegs e, 2)

r=1j=r41

k n
+P2 E E cijxixj+p2f3(xk+1)""xn): (4-1)
i=r+1j=k+1

with integral by; and ¢y, f, fo fo tn F(r), F(k—1), F (n—k), and

r=ry(f), pra(f)d(fa). (4.2)

Proof. Choosef in (f) of the shape (2.8), with least possible r, that is,
with r = r,(f). Then Lemma 4 shows that there is an f in (f) of the
shape (2.6) with smaller r if p{d(f;); so we have p+d(f,). Apply the
same argument to the f, of (2.6) and the lemma follows. But to justify
the remark following (2.7), regarding an alternative definition of r,(f),
we shall show that p1d(f,) in (4.1), or in (2.8), implies r = r,{f).

To see this, note'that in (2.4) with m = p we may replace f by f, =f (mod p).
Now Lemma 4 shows that x in A, (f) implies » independent congruence
conditions on the z;, if prd(f;). On the other hand, (2.6) or (4.1) with
the smallest r = 7,,(f) shows trivially that x in A,(f) is implied by 7,(f)
such conditions (p|z; for ¢« = 1,...,7). Clearly therefore p+d(f;) implies
r,(f) =7; the converse inequality is trivial by the definition of r,(f) as
the minimal r in (2.6).
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From Lemma 5 we deduee:

Lssisin 60 L[ fois the form (3.0) salisfying (4.2) thew the pemapping lifes
(f) into {y) and (g) into (b)), where

go=p pri o pear ). (4.3)

) = h—r=n—rif [is padically square-free, (+4)

nil =P PPy pE X ), (+.5)
giviny f=1ddlr,, ... T PXG 1 oo P,) (4.6)

and f~ if [ is p-adically square-free.

Proof. Looking at (4.1), with p1d(f)), and using Lemma 4, we see
that x isin A (f)if and only if ple, fori = 1,...,r: (+.3) follows on putting
m=p,M=[p, ... p 1, . t](adiagonal matrix with r elements p) in (2.5).

(+.1) and (4.3) show that ¢ is of the shape (2.6), with k—r, f,, for r, fy,
prd(fy), and with the variables permuted. (+.4) follows. The argument
for (4.3) gives

D = P G, B DT ey P X1y e, T ),

which with (4.3) gives (4.5), whence (4.6).

5. Proof of Theorem 1

We show first that if (f) is taken into (g) by the m-mapping then
Nl f) 2 A g), that is that the genus of f contains at least as many
classes as that of y. This follows if we prove (i) that to every class (f’) in
the genus-of f there corresponds a unique class (¢’) in the genus of g, into
which the m-mapping takes (f’), and (ii) that conversely, given a class (¢')
in the genus of g, there exists a class (f') in the genus of f, not necessarily
unique, which maps into (g'). We ignore the uniqueness in-(i) because it
follows from the definition of the m-mapping: thus the proofs of (i), (ii)
become similar.

The necessary and sufficient condition for f, f* to be in the same
genus, or to be semi-equivalent, in symbols f~f’. can be expressed as
SUx) = f(h7'Px), for some positive integer / and some matrix P
(with integral elements) such that (A7 ' Pl =+ 1 and A is prime to A(f)
(assumed # 01 the ease d(f) = 0 is unimportant and easily dealt with).
But if these conditions can be satisfied. then theyv can still be satistied
if we strengthen the last of them to A prime to md(f). m any positive
integer, or to A prime to md(fYd(y). With this (for which sce. e.g-
Theorem 50 of (4)). the conditions for g =gy arve of the same shape: we
take the m to be the m of the mapping,
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Now to prove (i), note that Lemma 2(iv) tells us that by suitable
choice of ¢ in (g) we may suppose (f) and ([ =S = [(h T Px), with
P asabove) to map into (g) and (47) respectively. Tt follows that (f7) maps
into (¢"), " = g(h ' Px)~g.

Using Lemma 2(v). (ii) above is proved in the same way. Thus ¥,
has been proved not to increase under the mapping.

To prove that 4 does not increase, we need suitable necessary and
sufficient conditions for f. f* (or g, ¢’) to be spinor-related, or in the same
spinor-genus. These are just as above (see (184) and (185) of (4)) except
that one more condition has to be imposed on the rational matrix A1 £,
The exact nature of this further condition is not important, since it is
the same for f as for y: it can be expressed as h-! INP) = (h-1Q)2 for
some ¢ with integral elements. This disposes of ¥

To see that A, does ot increase, we apply the argument above for
Ny 10 a set of classes in the genus of ¢ containing one representative of
each spinor-genus in the genus of ¢.

The assertions regarding the rank and signature being trivial, the
theorem s proved.

6. Proofs of Theorems 2 to 5

Proof of Theorem 2. Suppose that the m-mapping takes (f) into (g),
and (¢) into (¢). Then Lemma 3 shows that ¢ = m~2f& for any K whose
column vectors form a basis of the lattice u,(f) of that lemma. From
Lemma 3(i) it follows, ¢f. Lemma 2(ii), that H = mK ! has integral
elements and so f = ¢!/. This shows that |d| is non-increasing, and gives
the last part of the theorem. Trivially, 7,(f) = r,(¢7) cannot exceed
p(¢). Tt remains therefore only to prove the invariance of 2(n).

Now the foregoing argument shows that we have |H|=+1and f~¢ if
and only if the lattice w,(f) is mA,. We have therefore to prove that this
is always the case if (f) is square-free, i.e. in 2(n). Weassume that, forsome
m, the lattice p,,(f) strictly includes mA ,, and deduce that f is not square-
free. From Lemma 3(ii) it follows that if ke (f) strictly includes mA,, for
some m, say m'p?® which is not square-free then w,(f) also includes mA,,
strictly for m = p=lan = m’p. Tt follows therefore that there is a square-
free m such that g, (f) includes m\, strictly. Clearly therefore. see Lemma
2(vii), there is a prime p such that w,,([) strictly includes pA,. By Lemma 6
this shows that f is not p-adically square-free. hence not square-free.

Proof of Theorem 3. We construct the mapping of this theorem by
applying the m-mapping twice. then the Niy-mapping twice.. .., for suitably
chosen my. m,. ... all square-frec. We choose my so that the first two opera-
tions give (f,) with ld(f) = H . A <A f) i possible. The proof of
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Theorem 2 shows that this is possible unless [ is square-frees in that case
(f) maps into itself, and the set (my, m,, ..) may be taken to be empty,
We choose m, similarly: the construction terminates since the strictly
decreasing sequence [d(f). 1d(f) of positive integers cannot l;e
infinite. All the assertions of Theorem 3 now follow from Theorem 2 if
only we show that the image class is independent of the choice ot my,m,, ..,
(it might not be if we used non-square-free m’s).

Now Lemma 2(vii) shows that we have used in effect a finite number
of p-mappings, with various values of p each an even number of times;
and that the order of these mappings does not matter. The total number
does not matter either, because once we have arrived at a square-free
clags we can add two more mappings, for any m. This completes the proof.

Proof of Theorem 4. The mapping of this theorem is just the m-mapping,
but with .
m= I p (6.1)

Tplf) <

It is of course the identity mapping if the product is empty, that is if
(2.7) holds. We break it up into p-mappings, by Lemma 2(vii). We
appeal to Lemma 6, with k& = n since f is square-free. (4.4) tells us that
the p-mapping replaces r,,(f) < 4n by n—r,(f) > in; trivially, r, is unaltered
for any prime g#p. Hence the mapping maps 9(n) onto 2+(n). To see
that |d| does not increase, note that (4.3) gives [P 1d(f)] = pP <],
for r = r,(f) < 4n. '

All the assertions of Theorem 4 are now clear from Theorem 2.

Proof of Theorem 5. The case n =1 is trivial, so using the hypothesis
n#2 we may suppose 7> 3. The case (f) in 2(n) follows from the other
by Theorem 4. So we suppose (f) to be in €+ (n), with d#0.

Suppose now that there are two or more spinor-genera in the genus of /.
Then by Theorem 69 of (4) there are two possibilities. One is that f has
‘bad’ congruence properties in relation to some odd prime p; by
Theorem 66 of (4), the properties in question are certainly not bad
enough unless f(z)f(t) (z,tin A,) is never a quadratic non-residue
modulo p. This, however, cannot be the case if £ has a binary section
with discriminant not divisible by p; but if it has no such section, then
r(f)<1<in, contradicting (2.7) and showing that (f) is not in € (n).
The other possibility is that one of f(z)f(t)= -3 (mod 8), — 1 (mod 4) is
insoluble. This also leads to a contradiction: the theorem follows.

7. Conclusion
The application of the present results depends on investigating the
properties of a genus in 2*(n). One of these is that the genus contains &
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disjoint form which is a sum ol forms, cach in at most cight variables,
no two of which have a variable in common. Another is that the genus
of f(f) in Z(n), or in Z(n), contains a form which represents a given
y-ary form b, in F(v), v<n—3, v<minr,(f), provided only that the
P

signatures of f,¢ are such that f represents ¢ over the real field. These
are two properties which, in certain cases, could not be possessed by the
same class in the genus; whence my improvement on Magnus’s result
mentioned in the Introduction. It simplifies the proofs of these results
to consider only the positive case for which they are of most interest.
Accordingly [ include them in the forthcoming paper referred to above.
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