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THE REPRESENTATION OF INTEGERS BY POSITIVE TERNARY
QUADRATIC FORMS

G. L. WaTsoN

1. Introduction and definitions. Let f=f(z, ¥, z) be a positive definite

form of the type
ax?+by?+ ezt ryz+-sar-twy,

where x, ¥, z are integral valued variables, and the coefficients a, ..., t are
integers whose highest common factor is 1. As the determinant of such
a form may be fractional, I define

20t S
d=dif)=4%|? 2 r |= 4abc+rst~a72;bsz—ct2,
s r 2
and C = O(f) = 4ab—1?;

thus — O is the discriminant of the binary form f(z, y, 0), and the necessary
and sufficient condition for f to be positive definite is that ¢ >0, C >0,
and d > 0.

In order that f should represent a positive integer n it is necessary, but
not sufficient, that the congruence '

f=n (mod m)

should be soluble for every positive integer m. I shell call n (an)
exceptional (integer ot f) if this necessary condition holds and yet f does

not represent n. If, further, n is not of the form n,?n,, where n, > 1 and -

ny is exceptional, then I shall say that n is primitively exceptional. Idenote
by B(f) and E(f) the numbers (possibly o) of exceptional and
primitively exceptional integers of f. Clearly these numbers are arith-
metical invariants of f, that is to say, they are unaltered by an integral
unimodular transformation of the variables.

It is easy to see that there cannot be too many exceptional integers,
or more precisely, that they must have zero density. Linnik* has shown
how to find arithmetic progressions all of whose positive integers are
representable by f. The special case when E(f)= Ey(f)=0 has been
considered by Dicksont and by Jones and Palli, and I have carried these
investigations further in ap unpublished thesis.

* Izvestia Akad. Nauk S.8.S8.R. 4, (1940) 363-402.
t Annals of Math., 28 (1927), 333-341.
I Acta Math., 70 (1939), 165—191.
- IMarasMaTtrRa, 1 (1954), 104-110]
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As far as I know there are no results in the opposite direction in the
literature. 1 prove here the

TuaroREM. For any positive §, and sufficiently large d = d(f), we have
Eo(f)>dt*.

In another paper under the same title I shall show that £(f) is infinite
except in certain very special cases.

There is a very voluminous literature, both classical and modern, on
the arithmetical properties of quadratic forms. For the convenience of
readers not familiar with it, T sketch the proof of a very elementary and
imperfect result (Lemma 1), which is all that I require.

2. Outline of proof. Our main object is to prove
) '
z 1> di-#—; (1)
0<n<dl=43
.n exceptional

. we then show by an elementary argument that, among the integers n

enumerated in the sum on the left, there cannot be too few that are
primitively exceptional.

‘The proot? of (1) depends essentially on the facts that the integers n, for
which f=n is always soluble, have a lower density > d—, and that the

‘number of such integers below a given bound can be estimated with an

error term O(di**). On the other hand, the proportion of integers up to
dlf‘.tha.t can be represented by f is usually much smaller than d—<; if
this is 80, (]E) follows. If not, we consider integers, up to d'—%, satisfying
the foregoing condition and also another, which (i) does not reduce their
density too much and (ii) necessarily makes them unrepresentable by f.
The latter case arises only when the first two minima of the form are

small in relation to d, and the sitaation may be illustrated by the particular
case

f=a*+y?*+tce?, d=4c, clarge.

Here any integer below d'~¥8 <. ¢ must, if representable by f, be a sum of
two squares. This can be made impossible by taking, as the supple-
mentary condition above referred to,

g||n (@.e. qln, ¢2 ) n), for ¢ prime, =3 (mod 4).

The density of the integers considered is thereby reduced by a factor about

1 C . .
q1, ?vhlch 18 not important if we can choose an otherwise suitable ¢
sufficiently small in relation to d. i

3. Preliminary; supplementary definitions. Let

P=p,..0,_
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be the product of the odd primes whosé squares divide d, and let @ be the
product of the odd primes that are simple factors of d. Write

xi(n) = (2|n)
xz(n) = (—2[n)

xi(n)={(n | Dis)

} (Jacobi symbol) for n odd, and 0 for »n even,

(Legendre symbol), fort1 =3, ..., v.
Consider the conditions
wn)=mn, =12, ..., (2)

(n, @)=1, 3)
where each ;= +1 or —1.

Levmma 1. 7y, ..., 7, may be so chosen that, for every n satisfying (2)
and (3), the congruence f=mn s soluble to every modulus.

Proof. Tt suffices to consider the congruence
f=n (mod p*), o (4)

p* being any prime power. Now f being primitive must, for any p,
represent properly some integer prime to p, and may be transformed so as
to have that integer as its leading coefficient. That is, we may suppose
p fa. Then if p=2, or if p| P, (4) is soluble, with y =2 =0, for any n
with n=a (mod8), or (n|p)= (a|p). Thus we have only to take
Ny, M2 = (A2 @), OF Myp = (a| py), for p =2, p;.

Supposing therefore that p is odd and does not divide P, we can trans.
form f further so that p divides s and ¢. Then a transformation on y, z only

makes p|7; thus we have
f= axi+by2+cz2 (mod p),
d=4abc £ 0 (mod p?),

and so we may suppose p fab.
TIn case p| @, we have p|c; we put z= 0, and (4) reduces, for k=1, to
az?t-byt=n (mod p). (5)

Tt is elementary that (5) is always soluble, and since by (3) we have p [ 7
there cannot be a solution with 9f/dx = 2ax and 0f/dy = 2by both =0 (mod p)-
Hence a solution of (4) for any k is easily deduced by induction™*.

If p does not divide @, we have p [¢ and we argue as above if p [ 7, but
put z = 1 if p|n, and so replace 7 in (5) by n—c # 0 (mod p).

For the rest of the proof we may assume that fis a reduced form, that is,
one which has @, b, ¢ as its successive minima; for it is well known that

* See e.g., G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers
Oxford, 1938), 96, Theorem 123.
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every f is equivalent to such a form. This implies

a<b<e, (6)
2abc <d = Cc—f(r, —s, 0) << Cc < 4abe, (7
f=c, unless z=0. (8)

From these inequalities we deduce:

Lemma 2. If ¢ < d* ¥, there are at most O(d-%) values o -
_ ; < di-¥
for which f = n 1s soluble. &

Proof. We have identically
4aCf = C(2az+ty+s2)?+ {Cy-+ (2ar —st)2)2+4adz?,
Awhence the numbe1‘r of z for which f < d'-% is soluble (for z, ) is at most
0(01/2 d—3/8)-+ O (1) = O(aV/2bV/2 d—/5),

sinfzelb‘y (7) and the hypothesis of the Lemma d%3 = 0(C). From similar
estimates for the number of possible z, y (in which by (6) the term O(1) is

- relatively less important) the result follows.

4. Estimation. of character sums. We now come to the main part of
the proof. We assume that § is positive, fixed throughout the argument
s?nd sufficiently small, and we denote by e a positive real number not;
ngcesgarily the same at each occurrence, which is always small com;,)ared
with 3. We assume that d is large, and denote by £ an arbitrary positive
re.al number. The constants implied by the O-notation depend on e and
8 in formulae in which € and § occur, but are otherwise absolute.

Lemma 3. For any 9, ..., 1,, each = +1 or —1,
% 1l=2 by 1+ O(P¥te
v<n<t, (2) 0<n<i, (n, 2P)=1 O,

Proof. The sum on the left, multiplied by 27, is equal to

L .. X z 1:1 LY pi,
o o p=1,2 oo, 2 0<n<t iml {n; X;(:n')}
: X we put p, = -+ =p, =2, we obtain the sum on the right. Any other
.8t of py, ..., p, gives an error term of the type
+ = x(n),
O<n<t

;I’Jlere*x(n) is a non-principal character mod 8P. By an inequality due to
,O_yaf such a sum is O(P* log P). Adding 2"—1 such error terms, and
dividing by 2’, we obtain the result.

» .
" Nachrichten K. Ges. Wiss. Gottingen, Math.-Phys. Klasse, 1918, 21-29. Polya states
o result for a proper character, but this restriction is easily removed.
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been assumed
For future reference we note that %, ..., 7, have not here

to have the values of Lemma 1.

LemMa 4. For any mq, .., M, ach = +1or —1.

_, $(2PQ) be O
z 1 =2~ EHO(PH Q).
o<n<t, (2), (3) 2PQ

Proof. In the following summations, let w, v run through the
(positive) divisors of 2P, Q. 'Then, since by definition these integers are
coprime, each divisor of 2PQ occurs just once among the values of uv = w.

The sum on the left is

Suw pX 1.

v we )0<n<E, (2), vin
Tn the inner sum, v~1n satisfies conditions (2) with a different set of =;.
Hence by Lemma 3 the sum to be estimated is equal to

Su) {2 B 1+0(B]
v o<n<§, vin
(2P, n)=1

Qince £1, %1, 1 are respectively O(P9), 0(@), O(P @), the last

expression is

27 Z p(v) Zp(u) 2 1+ O0(P¥ Q)
v % 0<n<t, vin, uln
=92vSpw) T 14+O0(PH Q)
w . o<n<t, win

= 2~ ¢ T p(w) wi--O(P @),
whence the result.

LemMa 5. There ewists a (least possible) prime g such that

(20PQ, ) =1, ®
if q||n, then f(z, y, 0) = n is ensoluble, (10)
g = O(C+< P Q). (11)

Proof. We consider the sum

1.
o<n<t, 2CPQ, n)=1, (—Cin)=—1
Tt may be estimated as in Lemmas 3, 4; the only difference is tl.za.t instead
of fixing the value of each separate character, we fix only their produ.ct;,
and so replace 2= by 3. Plainly, the least » satisfying the summation
conditions must be a prime, and it is the required ¢. For when
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(—C|q)= —1, then ¢ fa, and the congruence l07
flx, y, 0)=0 (mod gq),
that is (2az+ty)*+ Cy2=0 (mod q),

is easily seen to imply =y =0 (mod ¢), f(z, ¥, 0)=0 (mod ¢?), and (10)
follows.

Now ¢ must satisfy (11), since

$(2CPQ)

— 1= 1, FANTZ %7 e Pe e

0 o<n<g, (20PQ,§)=1, (—~Clmy=—1 0 T30PQ OO P,
, 20PQ .

and § m——O{(2CPQ) }

Lemma 6. For q as defined in Lemma 5, we have

) x 1:2~~qq_—21¢(221f§) £+ 0(C* P+ @),

o<n<t, glin, (2), (3)

“Proof. We note that g—'n satisfies (2), with =, x;(g) for »;, and (3), with
q’Q for Q.

5. Proof of Theorem. TFirst suppose ¢ >dl-¥3. In Lemma 6, take

" £=d'-%3. Then for each of the integers n enumerated in that Lemma,

f=mn is insoluble with z 50, by (8), and with z=0, by (10); yet by

. Lemma 1 (giving the 7, the values of that LLemma) the congruence f=n is

soluble to any modulus. Thus all these integers are exceptional, and so
(1) follows on noting that (2*-2 being the number of divisors of P)

. T=0(P), C=0(1d)=0d"), P*Q<d.

H
If however ¢ << d'~%/3, an inequality stronger than (1) may be obtained
by subtracting the estimate of Lemma 2 from that of Lemma 4 (with
& =d~¥3), - Thus.(1) holds in every case.
Now, supposing that the Theorem is false, write
R= pM 1,

0<n<dl -
n primitively exceptional

.and let n,, ..., ng be the integers enumerated in this sum. Plainly

R <Ey(f) <dt

We have therefore

R R R
by 1< Z x 1 X di-¥ont I di-¥8mt
0<n<dl—a3 m=1 w m=1 m=1
n exceptional O<n, ntcdl-¢3 h

= O(di—s/s RY) = O(dr—24/3),

This contradicts (1), and so the proof is complete.
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6. Conclusion. There is no reason to suppose that the estimate is
anywhere near best possible ; for forms of a certain type, I can substantially
increase it by an arithmetical argument based on the results of the com-
panion paper teferred to above. On the other hand, T would conjecture
that E,(f) is always finite. If this is so, the fact that E(f) is usually
infinite is due to the existence, for at least one primitively exceptional n,
of infinitely many N such that ¥N2nis exceptional.

I am indebted to Professor Davenport, Dr. Estermanm, and Dr.
Doleiani for reading earlier drafts of this paper, and making a number of
suggestions.

University College,

London.
(Recewved 24th October, 1953.)

THE MINKOWSKI-HLAWKA THEOREM
(. A. RoGgERS

1. Minkowski’s fundamental theoremt and the Minkowski-Hlawka
theorem play basic complementary roles in the Geometry of Numbers.
Blichfeldt§ showed essentially that Minkowski’s fundamental theorem was
a simple consequence of a more general theorem, in which the convex body
was replaced by any measurable set and the lattice was replaced by a
discrete set of points having a definite asymptotic density. Hlawkall
himself showed that the Minkowski-Hlawka theorem could be proved
in a slightly modified form, when the star body was replaced by any
measurable set, but he did not replace the lattice by a more general set of
points. |

Recently -Prof. A. M. Macbeath suggested to me the possibility of
proving a more general form of the Minkowski-Hlawka theorem, in which -
the lattice is replaced by a more general set of points. It soon became clear

‘to me that one form of the method used by Mahlerq], Weylt, Rogersti
"and Cassels§§ makes no essential use of the fact that the set of points is

assumed to be & lattice, but depends only on the set of points being not too
dense. To make precise this concept of a set, which is not too dense, we
define the upper density of a discrete set A in the following way. If I is
any sphere, we define the density 8(X) of A in = to be the number of points
of A in X divided by the volume of .. We definel|| the upper density of
A to be

8,(A) =limsup sup8(Z(r)),

! >0 3(r)

U
where we use Z(r) to denote any sphere of radius 7.

Using this definition our main result can be stated in the following
form. ’ ’

t See, for example, G. H. Hardy and E. M. Wright, Theory of Numbers, 2nd Edit.
(Oxford, 1945), Chapters 3 and 24.

1 E. Hlawka, Math. Zeitschrift, 49 (1944), 285-312; for a simple proof see, for example,
J. W. 8. Cassels, Proc. Cambridge Phil. Soc., 49 (1953), 165-166.

§ H. F. Blichfeldt, Trans. American Math. Soc., 15 (1914), 227-235.

|| Loe. cit.

9 K. Mahler, Journal London Math. Soc., 19 (1944), 201-205.

tt H. Weyl, in unpublished work; see Notes of the Seminar on Geomelry of Nwmbers,
The Institute for Advanced Study, Princeton, 1949, page 46.

11 C. A. Rogers, see Notes of the Seminar on Geometry of Numbers, The Institute for
Advanced Study, Princeton, 1949, pages 46-50. °

§§ J. W. 8. Cassels, loc. cit.

[lli There are many different ways of giving an equivalent definition of this upper
density 5,(A): the same formula will, for example, serve to define &,(A), if Z(r) is used bo
denote any convex body containing a sphere of radius r.

[MAaTREMATIEA 1 (1954), 111-124]



