REGULAR POSITIVE TERNARY QUADRATIC FORMS

G. L. WATSON

1. Introduction

Let f be a positive-definite ternary quadratic form with integer coefficients. We
shall, ¢f. [1], say that f'is regular if it represents all integers not excluded by congruence
conditions. More precisely, we consider the equation and congruence

f(xl!xb x3) =a, (ll)

S (xy, x5, x3) = a(mod m), (1.2)
where a, m are positive integers and x,, x,, x3 are integer-valued variables. Trivially,
if (1.1) is soluble then (1.2) is soluble for every m; and f is regular if the converse
holds. The regularity of some forms, e.g. x,2+x,%4 x32, has been long known and
has many applications. For one such application, and references to others, see [2].

It is trivial that f cannot represent the positive integer a properly, that is, (1.1)
cannot have a solution with g.c.d. (x;, x,, x;) = 1, unless (1.2) has such a solution,
for every m. Let us say that f'is strictly regular if this condition for proper representa-
tion is sufficient. Strict regularity implies regularity. To see this, suppose that f is
strictly regular and (1.2) is soluble for every m. Then there exists g, with g2 | a, such
that (1.2) is always soluble with g.c.d. (x;, x;, x3) = g. So frepresents ag~2 properly;
and then trivially f represents a.

Now consider the genus of f, and denote by c(f), the class-number of f, the
number of classes in it. As shown, e.g., in [3; p. 101, Lemma 6] ¢(f) = 1 implies that
[fis strictly regular.

Let A be the 3 x 3 matrix with (i, j) element 9%f/dx, dx;; so det 4 is an even positive
integer. As in [3], and elsewhere, I define the discriminant d(f) as —} det 4, a negative
integer. We shall assume till the end of §8 that d(f) is square-free; this assumption
makes the problem easier because it makes (1.2) soluble (for all m) for a dense set of
integers a, see [3; p. 99, Lemma 4].

I am indebted to Professor Kneser for reading my first draft of this paper; he led
me to write it by his enquiries about some questions arising from my earlier paper [4].

2. Statement of results

With the definitions of §l, we shall prove two theorems. The first was in my
Ph.D. thesis (London, 1953) but was never published till now.

THEOREM 1. Let f be a positive-definite ternary quadratic form with integer co-
efficients and square-free discriminant. Suppose further that the class-number of f is at
least 2. Then f'is regular if and only if it is equivalent to one of

X124 x,2 4 x5%5 + 3x32, .1
X 2422, 4+ xx5 4 2x52, (2.2
X 24 X124 2X,2 4 2X,%5 +3X32, (2.3)
X124 x 0, +2x,2 4+ 3x,2 (2.49)
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If we omit the restriction ¢(f) > 1 then there are just 20 other possibilities, all
strictly regular as noted above, see [3; pp. 96-7, Theorem 1].

THEOREM 2. The three forms (2.2)-(2.4) are all strictly regular, but (2.1) is not so.

3. The genera of the forms (2.1)—(2.4)

Let f be one of these four forms, with d = d(f) = —11, —1§, —17, —21 respec-
tively, and write P = P(f) = 11, 5, 17, 3. For prime p, we find easily that fis a p-adic
zero form for every p # P. Taking m in (1.2) to be a prime power p‘, and referring
again to [3; Lemma 4], we find that (1.2) is soluble for every a unless p = P. If so,
(1.2) is soluble for every a # 0 (mod P); and it implies x,, x,, x3 = 0,0, 0 (mod P)
if P2 | aand ¢t > 2. Finally, ifa = bP, P } b, then (1.2) is soluble for all ¢ if and only
if the Legendre symbol (b | P) has the value —(P~!d | P), = 1,1, —1, 1 in the four
cases.

Using the theory of reduction, see [3; p. 97, Lemma 1], and excluding forms not
having the generic properties noted above, we search for reduced forms f* with f' ~ f
but f/* ~ f. We find no possibilities except:

X124 XX+ X2 + X505 +4x52, 3.D
X2+ X%+ X2+ 5x5%, (3.2
X324 X125 4 X2 4 X5+ 6x52, (3.3)
X124, + X%+ Tx52, (3.4

forf = (2.1), ..., (2.4) respectively. Ineach of these four casesf’ = fis easily verified,
see [3; p. 100, Lemma 5], but f’ ~ fis false because f represents 2 but /' does not.
So we have ¢(f) = 2.

4. Regularity of 2.1)-(2.4)

Let f be any one of the forms (2.1)-(2.4), and f* the corresponding one of (3.1)-
(3.4), and consider the equation

fl(ylssty:!) =a, (41)

with integer-valued variables y;. Suppose @ > 0 such that (1.2) is soluble for every m;
then, as is well known, some f” in the genus of f must represent a. As we have seen in
§3, " ~ fimplies that either f* ~ for f” ~ f’; so either for f' represents a. So either
we have the desired result at once, or we may suppose (4. 1) soluble.
We notice that f'(x, x,, x;) has two integral automorphs which may be expressed
briefly as
X;—> —x;—x; and Xx,—>—x,—Xx;—kx,, 4.2

with k = 1, 0, 1, 0 in the four cases. Using the first of these we see that (4.1) has a
solution with either 2 | y, or 2 ¥ y; +ky;. Then, by using the second of (4.2), (4.1)
has a solution with 2 | y,.

Now we have the desired result, that (1.1) is soluble, if we can construct an identity
of the shape

fl(yl’ Y2, y3) =f(zl’ 23, 23): (43)
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where the z; are linear forms, with integer coefficients, in y,, +y,, and y;. It may
be verified that (4.3) holds if we take

Y1+31y2, 2y, 3005

V1+3Y2 y3—3ya, y3+3y.;
Yi+3y2=y3: 2y3 —4y;—ys; or
Y1+3y2—y3, 2y3, 3y

21,232,235 =

(4.4)

5. Proof of Theorem 2, cases (2.1), (2.2), (2.4)

Arguing as at the beginning of §4 we see that fis strictly regular if and only if (1.1)
has a solution with g.c.d. (x,, x,, X3) = 1 for every a for which (4.1) has one with
gcd. (31,2, 73) = 1. In the case (2.1), (3.1) we see by taking a = 8 = f'(1, 1, 1)
that this is not so. For (1.1) is easily seen to imply x; = +2 and x,,x; = 0,0
(mod 2). So (2.1) is not strictly regular.

In the other three cases we note that by using the integral automorphs (4.2) we do
not alter the g.c.d. of the variables; so we may suppose (4.1) soluble with 2 | y, and

g.cd. (¥, y2, ¥3) = 1. Then obviously the g.c.d. of the numbers on the right of (4.4)
is either 1 or 2. We have nothing to prove unless it is 2 (implying 4 | a). So, changing
the notation slightly, we assume the solubility of

S (x1, X3, x3) = 4a, g.cd. (xq, X;, x3) = 2, (5.1)
and it suffices to prove the solubility of

SO Y2, y3) = 4a, ged.(y, ¥ y3) = 1. (5.2)
We take the three cases separately.

In case (2.2), note first that if x, = x3 = 0 then (5.1) gives x, = +2 and so
4a = 4 = f(1, 1, —1). So we suppose x,, x5 # 0,0, and we put y, = x,. We weaken
(5.2) to

2927 +y2y3+2y3% = 2%7 + x2X3+ 257,

g.cd. (y2,¥3) = $g.cd. (xz, x3). (5.3
(If this does not give (5.2) at once, we repeat the process.) Now we can satisfy the
first of (5.3) by taking y, = —x;—1x;, y3 = x5, or y, = x; and y; = —x;—}x,.

One at least of these choices gives us the second part of (5.3) too. So (2.2) is strictly
regular.

In case (2.4), we note that x;, x, = 0,0 gives x; = +2,4a =12 = (3,0, 1), so
we suppose Xy, X, # 0, 0, and put y; = x;. Then we seek a solution of
Yy +202? = x P xx0+2x,7%,  ged. (3, y,) = 1gcd. (x, %), (5.4)

One solution of the first of these is y;, = x,, y, = —x,—3x,;. If that does not satisfy
the second condition then we take y; = —x;—x,, ¥, = 4x, —%x,. So we find that
(2.4) is strictly regular.

6. Proof of Theorem 2, case (2.3)

In this remaining case, which is more complicated since f'is not disjoint, we begin
by using (5.1) to construct a solution of

2,2 +2,2,+22,2 4172, = 28a, 6.1)
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in integers z; with
g.cd. (z,, 25, z3) = 2 or 14, 6.2)
and
z3, a # 0, 0 (mod 49). 6.3)
We do this by putting z; = —x,; —4x,—2x3, 2z, = 2x,+X,, 23 = x5. Then (6.1) and
(6.2) are easily verified. If (6.3) fails then reducing (6. 1) modulo 7* we find that 7 | z,

and 49 | 2z, +z,, whence the contradiction 7 | x,, x,, X3.
The next step is to choose integers w, to satisfy

w2+ wyw, + 2w, 2 +17w,2 = 28a, 6.4
g.cd. (wy, wy, w3) =1lor7, 6.5)

and
ws, @ # 0, 0 (mod 49). (6.6)

If z, =z, = 0 then z; = 14, a = 119, and we take w; = 17, w, = 34, w; = 3. If
zy, 2z, # 0,0 then we take wy = z5 and choose wy, w, as we chose y,, y, in (5.4).

We notice that (6.4) implies (2w, +w,)? = 9w,2 (mod 7); so by putting —w, for
wj if necessary, and using (6.6), we may suppose that

2w, +w,+4w; = 0 (mod 7)
and if 7 | w; then also
2w, +w,+4w;, a # 0, 0 (mod 49). 6.7

We now choose y, y,, y3 to satisfy

wy = —y;—4y;,—2y3, Wy =2y1ty;, W3 =y, (6.8)

Substituting from (6.8) in (6.4) we find that the y, satisfy the first of the conditions
(5.2). By (6.7) and (6.8) the y; are integers; by (6.5), their g.c.d. is 1 or 7. Ifitis 7,
then 49 |a and 7| ws, so (6.7) gives 49 t 2w +wy+4wy = —7p,,7 ¥ y,. This
contradiction completes the proof that (2. 3) is strictly regular.

7. The “only if ” of Theorem 1

We now suppose that fis regular; and we may also suppose f reduced, see e.g. [3;
p. 97, Lemma 1]. For brevity write F for f(x,, x,, 0) and D for the discriminant of F.
Now in [3; p. 101, §5] I have shown (for f with square-free d) that ¢(f) = 1= f
regular = that F is one of

x 240X+ x27, X124 %52, X 24 x4+ 2%, %2+ 2x)2,
X2+ x3%+3%,2, X2+ X%+ 5x,2, (7.1

with D = -3, —4, =7, =8, —11, —19. Here we need only the second of these two
implications; and we note, see [3; p. 98, Lemma 2], that D and d determine f uniquely
up to equivalence. The lemma just quoted also gives some restrictions on d when D is
given,e.g. d # —1 (mod 3) when D = 3.

We now examine the arguments in [3; pp. 101-103, §6] for the six cases (7.1).
For D = —3 these arguments, like those quoted above, give d = —2, -3, —5, —6,
— 14 or —30 without any hypothesis except f regular and d square-free. So we have
six possibilities for the class of f, all proved in [3; p. 100, §4] to have class-number 1,
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and so excluded since we assume c(f) > 1. For D = —19 the argument is similar;
there is just one possibility d = — 78, which makes ¢(f) = 1.

If D= —4thend # —1 (mod4), |d| < 60, and d = 3 (mod 9) if |[d| > 12; also
7| dif |d| > 28. This gives eight possible d; five of these, namely —6, —7, —10, —15,
and —42, give ¢(f) = 1, and one is — 11, giving f ~ (2.1). The other two, —2 and
—3, can each be excluded by constructing f and noticing that it represents the first of
the forms (7.1).

We nexttake D = —11. Inthiscased = 2 (mod 16), |d| < 66,and (d] 11) # —1.
Sod = —30, —46, or —62, with ¢(f) = 1 in the first two cases. ¢(f) > 1is proved
for d = —62, in [3], by constructing /" with f* ~ f ~ f'. Here we must instead prove
f irregular by finding an integer a which is not represented by f, though (1.2) is soluble
for every m. We take a = 26; then for (1.2) see [3; p. 99, Lemma 4]. The equation
(1.1)is

X124 %1, +3%,% +2x,03 + 6x32 = 26. (7.2)

To prove (7.2) insoluble, express it, with y, = 1lx,+4x;, y, = 2x; +X,, as
24 11y,% = 1144—248x,% = 1144, 896 or 152. (7.3)
Each of these three is easily seen to be impossible, so the case D = —11 is disposed of.

We now take D = —7. From [3] we see that |d| < 42, and either |d| < 21 or
d = 3 (mod 9). Further, (d|7) # —1; and we have |d| > 10 since otherwise, con-
structing f, we find | D] < 7. We have ¢(f) = 1ifd = —10, —13, or —33,f/ ~ (2.3)
ifd= —17,f~ (2.4) if d = —21. The only other possibilities, each with ¢(f) > 1,

are d = —14, —19. In these two cases we take a = 5, 10 and prove as above that
(1.2) is always soluble but (1. 1) is insoluble.
There remains only the case D = — 8, which is more difficult.

8. Theorem 1, completion of proof

It remains only to prove that if fis regular and reduced, with d square-free, and
S (xq, %3, 0) = x,?42x,%, then d = —15, —21, —22, or —70. For the first of these
cases gives f ~ (2.2) and the others, as shown in [3], give ¢(f) = 1. We have
d# —1,3(mod 8) and |d| > 15, since otherwise, constructing f, we find that it
represents a binary form with discriminant —3, —4, or —7.

In the discussion of this case in [3], not only were some possible d excluded by
proving ¢(f) > 1 directly, but others were excluded by using ¢(f) = 1 = f strictly
regular to show that f must represent 4 properly in certain cases. Avoiding these
arguments, as we here must, [3] crudely gives |d| < 120 and either |d| < 40 or
d = 15 (mod 25). Usingalsod # —1, —3 (mod 8), the cases in which we must prove
firregular are:

—d = 23,26, 29, 30, 31, 34, 37, 38, 39, 55, 95. @8.1)
We appeal to [3; p. 99, Lemma 4] to verify that (1.2) is soluble for every m if we take
a=23,5,87,17, 31, 10, 185, 14,91, 15, 7 8.2

in the 11 cases (8.1) respectively.
Now the proof is complete if we show that (1.1) is insoluble in each of these 11
cases. Observing that fis of the shape

2 2 - ye 2
Xy 205" a3, X3+ ag3%X3 + 43357,



102 REGULAR POSITIVE TERNARY QUADRATIC FORMS

with d = a,3% +2a, % —8a,;, we multiply by 8, complete the square, and express (1.1)
as
Y12 +2y," = 8a—|d| x,% (8.3)

We verify that the right member of (8.3), when >0, always has a prime factor = 5 or
7 (mod 8), in odd multiplicity. So (8.3) and (1.1) are impossible, and the proof of
Theorem 1 is complete.

9. Strongly primitive forms

The ternary form f may (as in [5), with » = 3) be called strongly primitive if, for
every prime p, it has a binary section with discriminant not divisible by p. Clearly
d(f) square-free implies f strongly primitive, for brevity SP; but not conversely. The
following result is somewhat inelegant, but easy to prove:

COROLLARY TO THEOREM 1. Weaken the hypothesis d(f) square-free to p* ¥ d(f)
Jorp = 2,3, 5 and f SP (see definition above). Then the conclusion still holds.

Proof (outline). Assuming further that f'is regular, we shall show that the present
hypotheses imply

ld(f)| < 120, always, <40if 3 ¥ d(f) and 5} d(f). ©.1)

It then follows at once that p? | d(f) is impossible for p > 7, so d(f) is square-free
and the hypotheses and conclusion of the theorem hold.

We proved (9.1) in §§7, 8 by quoting some results from [3]. The proofs of these
results do not make full use of all that would follow about the congruence f = a
(mod p*) from d(f) square-free. More precisely, this congruence is soluble for all ¢ if
p X a, which follows easily from the hypothesis that fis SP. It is soluble for all a, ¢ if
(D|p) =1, Dasin §7. These two remarks and p? ¥ d for p < 5 suffice for the proof
of (9.1) contained in [3].

This completes the proof; and the result could be a useful first step towards finding
all regular ternary f. If any one of the conditions 4 ¥ d, 9 } d, 25 } d is omitted the
arguments get more difficult and the list of regular forms has to be lengthened.

In conclusion, let E(f) be the number of a > 0 such that (1.1) is insoluble al-
though (1.2) is soluble for every m. Then in [4] I showed that E(f) is large with
|d(f)| (for primitive f). I conjectured, but have not yet proved, that E(f) is usually
infinite.
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