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ONE-CLASS GENERA OF POSITIVE TERNARY QUADRATIC
FORMS—II

G. L. WATSON

L. Introduction. Let f be a positive-definite ternary quadratic form with integer
coefficients; by c(f), the class-number of f, is meant the number of classes in the

: genus of f. The object of this paper is to find all the f with ¢(f) = I; these f are the

ones for wl}ith ~ J'=f~f’, where f’ is an arbitrary ternary form and ~ |, ~
denote equ;valgnce and semi-equivalence respectively. Trivially, it suffices to find
the primitive f with ¢(f) = 1.

In m'aan notation, with x = col {x,, x,, x;}, and using an accent to denote
transposition, we have

J = f{x) = Ix'dx, where 4. = A(f) = (* flox, ox;). (1.1
The 3 x 3 matrix Asatisfies 4’ = A = — 4 (mod 2) and ha i
= d
whence 2| det 4, and det 4 > 0, so ) »even disgonalelements
d =d(f) = —4detA(f) (1.2)

is. a negative integer. In [1: 97, Table 1] I gave a list of 20 fi i
different genera, and proved that orms i Saor i 20

¢(f) = 1 and d(f) square-free < f ~ oneof fi, ..., fr0. (1.3)

With the same f1, ..., foo (2 S . .
1>+ J20 (all primitive) as in (1.3), and suitably chos
the result to be here proved could be stated as g oS

feey

¢(f) = 1 and f primitive < f ~ one of f,, woos [100- (1.4)

(In [1; 104, Theorem 2] T
and with 787 in place
calcu]ations.)

stated without proof that (1.4) held with suitable Saus oo
of 790; but I found three omissions on checking the

S . . .
and (;Derge results proved in [2] and improved in [3] will here be used to formulate
. uce from (1.3), a result equivalent to (1.4), but more concise. ’
ns 4>aSVe p;oved analogues of (1.3) for positive n-ary forms Sxy, .., x) with
> see [4] for n = 4, [5] for n = 5. From these, analogues of (1.4) for"n =>4

could be ded i =
¢ uced; but it seems b i i
Special featares est to do the case n 3 separately, since it presents

I am oblj

——— mged to the referee for checking the paper very thorou

' ghly and detectin
1nor errors and some obscurities. :
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2. Transformations which do not increase the class-number. For f, X, as above,
m a positive integer, and & = O or I, we consider the two congruences

A(fH)x = 0 (mod m), 2°(x) = 0 (mod m), 2.

in which 0 = col0, 0, 0}. Denote by A(m, e, f) the set of all x with intc?ger elements
that satisfy (2.1). As shown in [3; 172, §2L A(m, e, /) is a Iat'tlce, obv19usly a sub-
lattice of A,, the set of all X with integer elements. So there exists a matrix M,3 x3

and with integer elements, such that
MA; = Am, &, f); (2.2
and for any such M the form g defined by the identity
g(y) = 2m” ' f(My), whence 4(g) = 2'm™" M"A(/M, (2.3)
has integer elements. . .
Define f — (m, e)g to mean that there exists M such that (2.2), (2.3) hold; then,

: 11, _ \
see [3; Theorem 1] [ (m,e)g = c@) < c(f) (2.4)

We shall apply (2.4) repeatedly, with m, & not necessarily the same a.t each step. So
we define f —» g to mean that forms F, positive integers m;, and integers & each
0 or 1, may be chosen so that (for some k)

FO ~f7 Fi—l - (mi!‘gi)Fi(i = 1’ ~-'5k)7 and Fk ~ &. (25)
From this definition and (2.4) we see that
| fog=cl®) < c(f) 2.6)

3. Statement of result. We shall prove the following

TureoREM. Let f be a positive—definite ternary quadratic form with integer coeﬁcient's.
Then f has class-number 1, if, and only if, the relation ¢; — f, defined above, and in
(3], holds for at least one of the 68 forms ¢, ..., P¢g listed in Table 1.

The second column of the table gives the coefficients of x,%, x;x3, xZ.Z, in that
order. The third column gives, also in natural order, the other three coefficients of @»
We shall see that for each ¢, there is at least one f;, with 1 < j < 20, see (1.3),

such that s o) |
The pairs (i, j) for which (3.1) holds are shown in Table 2. For convenience,|k
Table 2 also gives the values of d(f;) and of P(f), = P(¢;)) when 3.1) holds, whert
P defined bY P(f) = T{p: fis not a p-adic zero form}. 3.2

(p always denotes a prime.) 4

4. Table 2. The invariants d, P determine a ternary genus uniquely when d 15§
square-free; see if necessary [1; 100, Lemma 5]. We therefore have g ~ fj ; ]
d(g) = d(f;) and P(g) = P(f), for any of the f; qf (1.3). (3.1) therefore fol]oW(i .
if we can construct a chain of the shape (2.5) with Fy ~ ¢, d(F) = d(fp, an “

P(F = P({f)-
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TABLE |
— T
i Coefficients of ¢, d(¢e) [ Coefficients of ¢, d($))
1 1, 0, 2 I, 2, 3 —18 35 5, 2, 7 2, —6, 13 —1536
> 1, 0, 4 1, 2,5 -72 36 5 2,13 0, O, 24 —6144
3 I, 0, 1 0, 0, 8 —-32 37 5, 2,13 4,12, 28 —6l44
3 2, 2, 3 2, 2,7 —128 38 7, 4,20 2, —4, 23 | —12288
5 1, 00 2 {0, 0,16 —128 39 1, 0, 9| 0, 0, 24 — 864
5 2, 0, 3 0, 2,1t —256 40 2, 2, 5 0, 0,24 —864
7 3, 2,5 0, 4,10 —512 41 7, 2,10 6, —6, 15 —3456
8 3, 0, 4 | 2, 0,11 —~512 42 6, 0, 9 | 0, 6,17 —3456
9 3, 2, 7 2, =2, 7 —512 43 5, 0, 6 2, 0,29 —3456
10 3, 2,11 2,—10, 19 | —2048 44 7, 2,13 6, 6,21 —6912
11 5, 4,12 | 4, —8,12 | —2048 45 7, 4,10 | 4, 8,28 —6912
12 s, 0, 8 2, 0,13 | —2048 46 11, 6,15 2, —6,23 | —13824
13 5, 4,12 | 4, 8,20 | —4096 47 8, 4,11 8, 8,44 | —13824
14 2,1, 212 2 8 —108 48 11, 10, 35 4, 28,44 | —55296
15 1, 1, 7 1, 513 —324 49 15,12,20 | 0, 16, 56 | —55296
16 3, 0, S ] 0, 4, 8 —432 50 I, 1, 3 1, -1, 3 —28
17 1, 1, 2 10, 1, 3 —20 51 1, 1, 9 1, -7, 9 —250
18 1, 0, 3 0, 2, 7 - —80 52 3, 2, 7 I, —3, 13 —1000
19 1, 1, 7 |0, 3, 7 —180 53 5, 5 5 2, =2, 8 —540
20 1, 1,.9 {0, 515 —500 54 7,1, 7 2, =2, 8 —1500
21 1, 0, 6 i, 0, 7 —162 55 1, 0, 4 1, 2,11 —168
22 2, 2,11 2, 10,23 | —1728 56 1, 0, 9 1, 913 —378
23 6, 6, 7 6, 6,15 | —1728 57 2, 2,5 2, 1,11 —378
24 7, 6,15 |2, —6,19 | —6912. | 58 5, 2,10 1, 10, 13 —2058
25 5, 1, 5 1, -1, 7 —126 59 1, 0, 5 0, 0, 8 —160
26 I, 1, 9 |0 7 2t —686 60 3, 2,6 0, 6,11 —640
27. 11, 0,5 |0 4,12 —224 61 1, 1, 3 I, 0 5 —52
28 3, 2,6 |2 2 7 —448 62 5 2 8 3, 6,9 —1188
29 6, 6, 7 |0, 4 8 —960 63 1, 1,13 0, 3,15 —756
30 7, 4, 8 | 2, 4,19 | —3840 64 1, 0, 2 1, 0, 3 —-22
31 3, 0,11 0, 10,35 | —4320- || 65 1, 0, 2 1, 0, 9 —70
32 7, 6, 18 2, 6,19 | —8640 66 5, 5,17 5, —2,23 —6750
33 3, 3,17 | 6 8,38 | —6750 67 I, 1, 3 0, 3, 5 —46
34 L, 1, 7 {1, 5 31 —810 68 5, 4, 5 3, 3, 9 —702
TABLE 2

i j a(fp | P i Jopdauyn | P

1-13 1 -2 2 55-58 ‘11 —42 42

14-16 2 -3 3 18, 59, 60 12 —10 5

17-20 3 -5 5 61 13 —13 13

21-24 4 -6 2 62 14 —33 3

’ 25-28 5 —14 2 63 15 -21 7

29-34 6 —30 30 64 16 —22 2

ég, 35-49 7 — 6 3 65 17 —70 70

R 8 -7 7 66 18 —30 2

o 9 —10 2 67 19 —46 2
, 54 10 —15 3 68 20 —78 78 "
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One way to construct such a chain is to take each & = 0 and each m; prime,
with m? |d(F,_); and i — | = k (that s, the chain breaks off) if no such m; exists.
By so doing it will be found that (3.1) follows for all the pairs (i, j) of Table 2, except
16, 7 and 18, 12. For these two cases we may begin the chain with — (4, 1) and then
proceed as above with — (p, 0).

As shown in [3; 82, S ' ~f—~ (me)g ~ ¢ implies f’ — (m, g)g’, so the

— (m,e) and — are essentially relations between classes. So regarded, the |
— (m, &) are mappings since f — (m,e)g and f — (m, &)g’ together imply g~ g
Obviously therefore it is convenient to choose f, from its class, supposed given, so _§

that a diagonal M will satisfy (2.2).

If we put m = p and ¢ = 0, and suppose pld, then M = [1, 1, 1] will do if
f =0 (mod p), identically; and M = [p, 1,1} if f = ax,? (mod p), pta. If f i.s
not equivalent to a form of either of these shapes, then, see if necessary [1; §7], it
is equivalent to one = ¥(x,, x,) (mod p), p& d(¥), and for such a form M = [p, p, 1]

will do. .
With these remarks the calculations needed to complete the verification of Table 2

are quite simple and they are left to the reader.
5. Determination of min {c(f), 2} for given f. We prove:

LeMMA 1. Suppose that f, g, h, p satisfy c(h) = 1 and
f - (p,0)g — (p, Oh; .1

and let P, Q, R, S, I, U denote 3 x 3 matrices with integer elements, such that
PQ = RS = pl, I being the identity, and U is an automorph of h. Then:

(i) f(x) = h(Qx) (identically), for some pair P, Q ;

(ii) every f' = fis expressible as h(Sx), for some pair R, S;

(i) #(Qx) ~ h(SX), if, and only if, there exists U such that
PUy = 0 (modp) <> Ry = 0 (mod p) (fory e Aj);

@) c(f) = 1, if, and only if, for every pair R, S such that h(Sx) ~, H(Qx)(= )R
there exists U satisfying (5.2).

Proof. For (i), take m = p, & = 0, in [3; 174, (3.7)]. For (ii), choose g, hso
that f* — (p, 0)g’ — (p, O)#’. By [3; 173, (2.11)] we have g =g W ~h;soby
the hypothesis c(h) = | we have &' ~ h, and we appeal to ().

In [3; 176, Theorem 3] f — (m, &) g — (m, e)h and f’ = (m, e)g > {m, e)h are
assumed, and two necessary and sufficient conditions, (i) and (ii), for f ~ f' are given.
The argument shows that, if the second condition (on f") is weakened by putting g

(=~ g) for g, we still have (i) <> f ~ f’. So from (i) (of the theorem quoted) we
have (iii) of the present lemma, after specialization and a little change of notation.

Clearly det Q and det S are non-zero integers, each dividing p®. It follows t.hat
h(Qx) and A(Sx) are always equivalent over the real field, and also, for every prime
q # p, over the g-adic integers. So h(Sx) ~, f <= h(Sx) =~ f. With this remark,
(iv) follows immediately from (i)-(iii), and the lemma is proved.

It will be useful to notice that, for vectors x, y with integer elements, y is expres- -
sible as Qx, if, and only if, Py = 0 (mod p): and similarly for R, S. We may therefore

regard f. £ as hA(y) with y restricted to satisfy Py, Ry = 0 (mod p).

2K

- We have:
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To determine whether or not c(f) = 1, for given f, we use (1.3) if d(f) is square-
free, and if not choose p, g h, to satisfy (5.1) and p?|d(f). We then determine
whether or not the condition of part (iv) of the lemma holds; if not, c(f) > 1, by
the lemma or (2.6). So suppose the conditicn satisfied, and then we know that
co(fy =l<=ch) =1 If |d(h)| < |d(f)|, we repeat the process, with /1 in place
of f: so suppose |d(h)| = {d(f)|, whence, by (i) of the lemma, det @ = +1 and
f ~ h. Now (5.)and (2.6) give c(f) = 1 <> c(g) = 1, and if |d(g)| < |d([f)| we
repeat the process, with g for f (and a different choice of p). 1t suffices now to note
that, if f = (p, 0)g — (p, 0)f, then d( f)d(g) is exactly divisible by P>, so

pPld(f) = p*rd(g),

and d(f)/d(g) is a power of p. The latter assertion is clear from (2.3). For the former
see [2; 580, Theorem 4] ; it will also be clear from §§7, 8 below.

It is possible to prove c(¢p) =1 for i = 1, ..., 68 by the foregoing method.
Then we have the “if” of the theorem, since ¢; — f implies c(f) = c(¢) = |,
by (2.6). ; :

We shall have to apply Lemma 1 in a large number of cases, in some of which the
condition of part (iv) holds, in others not. Obviously it is not practicable to give all
the details, but a number of examples will be given later.

t

6. The “only if ” of the theorem ; a special case. If a is a positive integer then
f > a means that f(x) = a is soluble (in integers x); and f >,a means that
J(x) = a (mod p') is soluble for every 7. As in [6], f is regular, if f >, a for every
p ==~‘f > a. Asin [2], f is strongly primitive (SP), if for every prime p it has a binary
section with discriminant not divisible by p; and trivially, if f is SP then p.t a implies
f >, a. Itis well known that c¢(f) = I implies that fis regular. (In [1], f > a meant
that f represents a properly, but here it is convenient not to distinguish between
proper and improper representation.)

As shown in [6], the argument used in [1; 101-3, §5, 6] to prove the = of (1.3)
f!ocs not make full use of the hypotheses. Nearly all of it remains valid with f regular
in place of c(f) = 1. p2yd(f) gives an improvement on pYa = f >, a which is
used only for small p. And finally, if we were satisfied with a weaker conclusion,
say | d | small enough not to be divisible by the square of any large prime, then the
argument could be shortened.
irfT;ca.a,riu;ne:t qugted abgve makes use of two fairly obvious remarks: First,
with Id(l}:")| - 42‘; an ai-alz('ls not a square, then f must represent some binary F
the diagonal\coe;ﬁtg.e (t a 1fngf to bfa reduced, put F.=. J(x,, x,,0) and note that
FULO) & min (oS )n s of f are its successive minima. So we must have

1»4z) and F(0, 1) < max (a,, a,); and we note that
Sccondly, |d(F)| = — d(F) < 4F (L, 0)F(0, 1)).
f>aand F=f(x;,x,0) 3 a=[d(f)| < ald(F)],
for which see [1; 98,
assumed and

6.
) 2.7l .These remarks are useful, if f regular, or ¢(f) = 1,~is
f >, afor all pis true for a number of small values of a. In particular,

Lemma 2. s,

t ) = is 200 = d(FYis false for i
Then d ;s Squarppose hat c(f) = 1, fis SP,and p* |d = d(f)is false for p=2, 3, 5.

e-free.
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Proof. Since c¢(f) = | implies that [ is regular, the hypotheses of_ the lemn'la
imply those of [6; Corollary to Theorem 1], the conclusion of which gives azﬁmt.e
set of possibilities for | d |, all square-free (crudely, |d| < 80, # 49). p*ld is
therefore false also for p = 7, as was to be proved; and of course we have

f ~ some f; by (1.3). . .
The condition 254 d could be omitted in this lemma, though not in the result

quoted from [6]. -
Lemma 2 will be used to show (in Lemma 4) that we need only use Lemma 1 with

either p < 13 or p = 23; but we have yet to show that we need only use it finitely |
many times.

7. 0dd primes. We note that f < g, meaning f — g — f, implies ¢(f) = C(g),
by (2.6); so it suffices to prove the only if ”” of the theorem with the further hypothesis

that f is normalized under —. That means, as in 3], that
feg=1d@] = 1dNI. (7.1)

We note also that, for any f, there isia form g with f — g and d(g) square-free; see §4.
Assuming ¢(f) = 1, and using (2.6), we may suppose henceforth that

f—f; forsome j,1 <j < 20, see (1.3). 7.2
For odd p it is well known that
€1 €z (4 2
f~pap x2+a,p %2 + a3 P x3%, .3
pY2a,a,a;, 0< e < e < e

If we write briefly (e, e,, €5) for f satisfying (7.3) then, see [3; 179, (7.9-(7.9)],
we have for w 2 0

. (e, €2, €3) = 0 (jw—eyl, fw—ey], Iw—esl) 7.4
and f e pf.f o F,,where F, = (0, e3—¢5, ey—ey). (7.5

(F, is the right member of (7.4) with w = e3.) The first part of (7.5) givesf < p~*f,
if e, > 0; so by taking g = p~'for F, we see that

(7.)=>e =0 and e; < fes. (7.6)
We now prove :
LEMMa 3. If there exists an odd prime such that (7.3) holds with one of the following
sets of exponents ey, €, €3):
| 0,0,2( > 5), 0,0,3)(p > 3, (0,0,4)(p = 3,
©,1,2)(p = 11,13,0r23), (0,1, 3)(p =57,
O, 1,4 =3), 0,2,90p = 3), a.n
then ¢(f) > L.

Proof. We first notice that if p¥m and f— (m, &)g then, see (2.3), g ~, 2° mf R

whence the exponents e; are the same for g as for f; and if we prove c(g) > !

c(f) > 1 follows from (2.6). Repeating this argument sufficiently often, with
suitable m at each stage, we see that it suffices to prove the lemma with the additionalj§
hvpothesis that g2 d( f) for every prime g except the prime p for which the e; have§g
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one of the sets of values (7.7). Next, repeated application of —(p, 0) will give
(7.2) for some j; and Lemma 2 disposes of ¢, = Oforp = 7.

Now we have finitely many genera to consider, and the lemma can be proved by
showing in finitely many cases that condition (iv) of Lemma | does not hold. Some
examples will be given later to show how this is done; there are also ways of cutting
down the number of cases to be considered. Subject to these remarks we consider
the lemma as proved.

It will be convenient to define «,(f), for odd p only, to be 0, if (7.3) holds with
e, = e; = e; (mod 2), 1 if not; and to prove that «, is invariant under — (m, ) and
so under —. Factorizing — (m, ¢) as in [3; 174, (3.10)], we see that it suffices to
prove this assertion in the two cases m = p*, pf'm, with ¢ = 0 for m = p”. Now
see (7,4) and the beginning of the foregoing proof. The invariance is thus proved,
and so in (7.2) we necessarily have d(f;) = —d' or —2d’, d’ being the product of the
odd p with ,(f) = L.

The canonical expression (7.3) is classical, as are (8.1) and (8.2) below; but the
reader may refer if!'necessary to [7; ch. 4]. In particular, Theorem 34 on p. 58 of
[7} shows how (8.2) can be transformed into (8.1) when the ¢, are all equal.

. Lemma 4. (7 ..1) and c(f) = 1 imply, for odd p, that the e; in (7.3) have one of the
Sfollowing sets of values:

(0,0, 0) (for any p), (0,0,1) (for p < 13 0r p = 23),

7.8
0,0,2)(»p=3),0,1,2)(p=3,50r7),(0,1,3) (p = 3). } 79

Proof. Assuming the lemma false we choose a p for which the e; are not as in
(7.8).' We may also assume, by Lemma 3, that they are not as in (7.7); and this
gives e, 2 3. Now we apply — (p, 0) once if e, = 1, twice otherwise. Using (7.4)
with w = 1, we find that thereby (e,, e,, e;) goes into (e, e, e3), where ¢ = 0
always, e,’ = e, if e, < 1, e, — 2 otherwise, and ey =ey—life, =1, e, —2if
not. It follows that e,’ < le,’.

Now, from (2.6), we may assume, using induction on es, that the e/ are as in

(7.8). It follows easily that the e, are as in (7.7) or (7.8), giving a contradiction
which completes the proof.

8. The prime 2. We consider first the case

. S~ 2700k, x3) + 2%ax,2, 24 ad(®). 8.1
ff-‘* Pf is true for p = 2, so, assumin
without loss of generality that the t

:!nodulo 2, fora suitably large . Now

g (7.1), we have re = 0. We may suppose
wo sides of (8.1) are identically congruent
. : if r > 2 and e = 0 we find (with an obvious
F‘“i(:lal M in (2.3) at each step) that f — (2", 0)F, » (27, l)f,(whence fe Fy,
S{I) bmg70f the shape (8.1) with exponents 0, r—2 for r, 0, and d(F,) = 27""24(f).
ag:;in)}i'})’ r< 1l Forr=1,e=0, we have f — (2, 0)F, — (2, 0)f, whence
we may o 2> and F, has exponents 0, 1. In this case d(F,) = 4d(f); so by (7.1)
pposer # l;and now r = 0, ¢ = 0.

Cannoet ;Ze that we shgll have to prove .that, with ¢(f) = | and r = O in (8.1), we
e<as ve e .2 4. Since two applications of — (2, 0) replace e by e—2 if e > 2,

S 3 follows if we prove e # 4, 5; and this in turn need only be proved in the case
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p?ydforallp = 3, byanargument used in Lemma 3. Some applications of Lemma |
are required, details of which are again postponed.
When [ is not of the shape (8.1), we have instead

f~y 2 a X2 2% a, X0+ 2%ay x,%, 2 aazay, (8.2

where, using [« 2f, we may suppose 0 = ¢, < ¢, < ¢;. If the ¢; are all equal
(8.2) can be put into the shape (8.1), withe = e, r = ¢ + 1. (7.4) holds with (2¥**, 1)
for (p*, 0), and we have (7.5), so (7.1) gives us (7.6), and (8.1) impossible for
r = e+ | gives also e; > e;.

To see the possibilities for the ¢; in (8.2) when e(f) = I, we consider several
cases; in each g, A, satisfy £ — (2, 0) g = (2, 0) 4.

(e, =0, a,a,=—1 (mod 4), e; > 2. Here h is of the shape (8.1) with
r=0,e=e;— 2;30 ey < 5, which is best possible, will follow, if (see above) we
prove e < 3.

(i) e, = 0,a,a, = | (mod 4), e; = 2. Defines = 1, ifa, = a, (mod 8), — 1

if not. Then g is of the shape (8.2) with exponents 0,0, e; — 1 and coefficients
€a,, &y, ay. S0, if we prove that e3 = 6 is impossible, it wilt follow that e; < 5.

(iii) e,, e, = 0,1, e; > 3. g has exponents 0,1, e — 1. e3 < 6 is needed, and
will follow, if we prove e; # 7.

(iv) e,,e; = 0,2, e5 > 4. h has exponents 0,0, e; — 2 so, if we prove e; € 5
in cases (i), (i) we shall here have e; < 7; we need e3 < 5, so must excludee; = 6, 7.

(v) e,e; = 0,3,e5 = 6. h has exponents 0, |, e; — 2 and if we prove e; < 6
in case (iii) then here we have e; < 8, which we need to improve, by excluding
e; =8, toe; <7

(vi) e, = 0, e, = 4. h has exponents 0, e, — 2, ; — 2. So by induction from
e, — 2to e, we have e3—e, < 3, 4 for even, odd e,, if we prove the inequalities for
e, = 2,3, see (iv), (v). Then we have a contradiction with (7.6); so ¢, < 3.
Two cases of (8.2) are of special interest:

frra x>+ a X2 + 2a, x;%, 2¥a ayas
and
[~y a x4 gy X7 + dayxy?, a,a, = — 1 (mod 4), 2) aj. (8.4)

Using — (2,0) as in (i)-(vi) above, also — (2%, 1), it can easily be shown that
every f of the shape (8.2) with ¢; > ¢, satisfies f — g for some g of one of the shapes
(8.3), (8.4).

With f — (2,0) g = (2,0) & as above, (8.4) gives 2} d(h); but with f — (4, 1)
g - 2,008 »> (2,00 #,d(R) = 2 (mod 4). So, with the notation of the remark at

the end of §7, we have in case (8.4) both of f— G, f— G, d(G) = —d’ $
d(G") = =2d', ¢(f) = 1 only if ¢(G) = ¢(G') = 1; and if so (7.2) holds for two .

different j.

9. Further deductions from ¢(f) = L. 1f we assume ¢(f) = | and (7.1), and us¢ g
Lemma 4 and the analogous results for p = 2 given in §8, the number of possibilities ¥

for the genus of f is clearly finite, but inconveniently large. An obvious way to cut

the number down is to improve on Lemma 4 by considering separately the cases
4 Correspond to a for

j=1,..,20in (7.2).
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For example, suppose 7% | d; then by Lemma 4, we can only have ¢, ¢,, e5 = 0, 1, 2
in (7.3) (with p = 7). In (7.2) we must have 7| d(f), givingj = 5,8, 11, 15, 0r 17
(see Table 2). We can however exclude three of these cases by using Lemma I,
assuming as in Lemma 3 that p>4d for p # 7. Thenj = 5or 11,d(f)) = — 4 or
_42; and we notice that 5.} d(f;). So, by the beginning of this argument with 5 for
7,52 4d. Using Lemma | to exclude a finite number of possibilities with 7% |d,
j=5orll, and 9|d (we may suppose p>td for p # 3,7), we find that 94d; and
similarly 4/ d. Now however d(f) = 49d(f;) = — 686 or — 2058; and using
Lemma | again we find three possibilities for the class of f. One of these is f ~ ¢,
one is [ ~ ¢,¢, and the other satisfies f — (49, 0)p,5 — (49, 0) f.

The foregoing argument finishes the proof of the theorem for the case 49| d; so
we assume 49¢d and prove in the same sort of way that the theorem is true for
25(d. Assuming p*kd for p > 5, we consider separately the three cases
d'= +9(mod 27), d = £27 (mod 81), d = 0 (mod 81), in which, in (7.3) with

= 3, the exponents e; are (0, 0, 2), (0, 1, 2), (0, 1, 3). The number of cases of the
third type to be testéd may be cut down by using (2.6) and (0, i, 3) — (3, 0) (0, 1, 2).

Now it suffices to deal with the prime 2 with the simplifying assumption p% 4 d for
p = 3. With this, suppose first that (8.1) holds with r = O and e = 0, 1, 2, or 3:
fore = 0, 1 weuse (1.3) and Table 2. Fore = 2 or 3, we use Lemma | to see whether
ornot ¢(f) = 1; and if so, a ¢; with ¢; — f is easily found. The case (8.2) may be
conveniently broken up into f — (8.3) and f — (8.4), each rather more complicated.

10. Ampliﬁcation of §5. We now consider more fully how Lemma 1 can be used,
or sometimes avoided. Assuming (5.1) and using part (i) of the lemma we see that
bccaus.c of the restrictions on P, Q, we have f ~ h or p? h, both trivial, unless one ot"
det @'is +p and the other £p? Then we restrict R, S to satisfy det R = +det P
det § = tdet Q, since otherwise h(Sx) ~, h(Qx) is obviously impossible._ ’

In Phe n(?n-trivial case det Q = =+ p, detS = =+ p, it is clear that each of h(Qx),
h(Sx) is equivalent to one of the p* + p + 1 forms

h(xy, X5, 1) + ux, + pxy), hxy, vxy + pxy, x3), R(px,, X3, X3), (10.1)

;vhcx;eacp of t, u, v is_an integer between 0 and p — 1. Then Py, or Ry, = 0 (mod p)
in be written as a single scalar congruence, which must be the corresponding one of

Y3 = 1y; +uys ¥, = vyy, ory = 0 (mod p). (10.2)

witl:n :hi other non-trivial case 4#(Qx), or 4(Sx), could not be of the shape (10.1),
clémp = |det Q| = jdet S| for p; for then pQ~ ! and pS~! would not have integer
ents: Instead, we may replace (10.1), (10.2) by

h(xy, txy + px,, ux, + px3), h(pxy, X3, vxy + px3), h(px,, px,, x5),  (10.3)
Y Vs 2 Uy yeys = 0,0x,5 3y, p, = 0,0 (mod p).

. It “./ill be convenient to denote b
Spectively; that is, to put

(10.4)
y F, G, H the leading binary sections of f, &, h
F=Fx,x) = fix;,3,0), G = g(x1, x5, 0, H = h(x},x5,0).  (10.5)

0 . .
Ne problem is to pick out, from the p? + p + 1 cases (10.2) or (10.4), those that
m f' = h(Sx) ~, f = h(Qx). The examples to be given below
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will show how this is done; but we note that failure of the condition in part (iv) of the
lemma can be proved by considering two congruences only; also that sometimes
h(Sx) ~, h(Qx) implies that (5.2) holds withU = L.

We have also to consider the possibilities for U. If the condition in part (iv) of
the lemma is to be proved satisfied, it suffices to find one U for each R. In the other
case, we may be able to prove indirectly, for some R, that a suitable U cannot exist,
Now we discuss some examples.

(i) py d(h), p > 2, f of the shape (0, 0, 2), see (7.3). We have (10.1), (10.2), and
we cannot exclude more than about half of the p> + p + 1 cases. ¢(f) = |, when
true, can be proved without much difficulty by using the theory of reduction,
c(h) = | # c(f) = | can generally be proved by using (6.1).

(i) p = 2k d(k). We consider case (10.1), and we may suppose h = x; X, * X532
(mod 4). We shall be interested only in the case 2. A(f). So,togetf’ = h(Sx) ~, f,
the congruence Ry = 0 (mod 2) cannot be any of (10.1);, (10.1);. Distinguishing
the cases d(9) = 1, — 3 (mod 8) in (8.1) (with r = 0, e = 2) and noting that in the
second fis never = 2 (mod 4), we have two genera to consider. In one of them f may
be supposed to correspond to £, u = 0, 0 in (10. D,f' tot,u=1,00r0,1,andwe
seek two U’s. In the other, t = u = | corresponds to f and there is no other possi-
bility for f*; no U is needed and we have c(h) = c(f). See, e.g.,¢,7, $28: Po1-

(iiii) f of shape (8.4), p = 2. We have £ as in (ii) and have to consider three cases
of (10.4), namely x; =0 and x, = x;, X; = x; and x, =0, x; = x, and
x3 = 0 (mod 4).

(iv) p = 3, f of shape (7.3) with exponents 0, 1,2. If ¢, a, = — | (mod 3) no
non-trivial U is needed; otherwise just one; see [3; 176-77].

(v) p=7 and h = ¢gs = fi;- We may suppose H = x,> + 2x,> and
h = H(mod 7). c(f) = 1 is possible only if f is of the shape (0, 1,2), see (7.3).
Then, with ¢ = + 1 = (4, ]7) (Legendre symbotl), f* ~, f corresponds to a con-
gruence (10.1) which is consistent with (i(y) | 7) = & but not with (k(y)|7) = — &
So (10.1), must be excluded. For e = 1 we may take Py, Ry = 0 to be x,, x; = 0
respectively; and for ¢ = — |, x; = x,, x; = 2x,. Then in each we notice that
Py = 0 is consistent with A(y) = 2 — ¢, but Ry = 0is not. Clearly no U can satisfy
(5.2), and so ¢(f) > 1.

(vi) Finally suppose p = 2, and f of the shape (8.2) with exponents 0, 3, ¢, ¢ 2> 6;
then 4 is of the same shape with exponents 0, 1, e — 2. We are concerned with
(10.4), but all the cases (10.4),, (10.4), correspond to imprimitive f'. Without loss
of generality, let Py = 0 be x,,x; = 0,0 (mod 2). f’ is of the shape (8.2) with
a, + 2 for a, if it corresponds to x, = x, x; = X, or 0. So take Ry = 0 to be
X5, X3 = 0, x; (mod 2); this does give A(Sx) ~, f.

We notice that there are just two possibilities modulo 2 for y satisfying A(y) = a4
(mod 8); they are {1,0,0} and {1,0, 1} ; and U satisfies (5.2), if, and only if, it alters
one of them. and so necessarily takes it into the other. For an example, taking
f = ¢, a; =5, h = Lf(4x;, x5, x;) is unaltered by interchange of x,, x;, giving
the desired U since A(l1, 0,0) = ~(0,0,1) = 5.
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