ONE-CLASS GENERA OF POSITIVE TERNARY QUADRATIC
FORMS

G. L. WATSON

. Introduction. We consider positive-definite ternary quadratic forms with
integer coefficients. Such a form, f, can be written in matrix notation as

,
2ay, ag, a3

f =4 Ax, 4= A(f) = ay,  2ay, ass

(1.1)

sy as, 2az;

Here X' is the transpose of the column vector X = {x,, X3, x;} and a;; = a;; 15 the
coefficient of x; x; in f. Clearly det A is positive and even and so

d=d(f) = —}detA(f)

is a negative integer.

The class of f is the set {g: g ~ f} of forms g that are equivalent to f (over the
integers, that is, by integral unimodular transformations). The genus of f is the
set {g:g =~ f} of forms g that are semi-equivalent to f. Semi-equivalence ()
may be defined in various ways. First, we shall define f ~ g, for f as above and g

ternary, with integer coefficients, to mean that (i) g is equivalent to f over the real .

field (that is, g is also positive-definite) and (i) g is equivalent to f over the ring
of p-adic integers, for every prime p.

If however we assume (ii) above then (i) follows [1; 72, Theorem 43] (the
signatures of f, g cannot differ by a multiple of 8 without being equal), and
d(f) = d(g) also follows, trivially. It further follows [1; 68, Theorem 41] that
there exists a form A which is equivalent to f and congruent to g modulod(f),
identically in the variables. Conversely, if d(f) = d(g) and there exists / as above,

then for every prime p we have f ~, g, ~, denoting equivalence over the p-adic

integers [1; 56, Theorem 33] and f = g follows.

Clearly every genus is a union of classes; and we denote by c(f) the class-number
of f, that is, the number of classes in the genus of f. It is well known that
e(f) < oo for all f, so c(f) is a positive integer, invariant under ~. We shall be
interested in the f with ¢(f) = 1. It is known, see Lemma 6 below, that, if
c(f) = 1, then f represents all positive integers not excluded by congruence
considerations. This property, besides being of interest in itself, will be used as @
means of finding the one-class genera. As such, it can be made more effective by
restricting d(f) to be square-free. After this case has been dealt with the generﬂl
case, with d(f) unrestricted, becomes less difficult; and a similar two-part argument
can be used to find all the positive #-ary one-class genera with n > 4. This will be
explained briefly after we have proved:

Turorem 1. Let f be a positive-definite ternary quadratic Sorm with integer coef-
ficients and square-free discriminant. T hen the class-number of f is | if and only 1
fis equivalent to one of the forms fis s a0 listed in the table below.
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TaBLE |

: Coefficients of f; i

i I @, Gia, Gy | dus, G23, 933 d(fo
i T

1-6 1, 1, 1 0 1, 1 -2

0, 0, 1 -3

0 1 2 _5

0, 0, 2 -6

0 1, 5 —14

0, 0,10 -30

7-11 1, 0, 1 1, 1, 2 -6

o 1. 2 —7

1, t, 3 —-10

) 0 1, 4 —~15

1, 1, 11 —42

12-14 I, 1, 2 0, 2, 2 —10

0, 1; 2 ~13

0, 4, 7 —33

15-17 1, 0, 2 1, 1, 3 -21

1, 0, 3 —-22

| 1, 0, 9 —-70

18, 19 1, 1, 3 0, 5 5 —30

0, 3, 5 —46

20 1, 1, 5 - 0, 6, 6 —178

The related problem (see Lemma 6 below) of finding ternary positive forms
representing all integers not excluded by congruence considerations has been
studied in [4] and in my Ph.D. thesis (1953). There I obtained results (in which the

foregoing forms f;, ..., f5o occurred) which were too complicated and incomplete for
publication.

2. Reduction. It will be convenient to write
' F = F(x;,x;) = f(x,x2,0) = ayy x,2 + a, %, %, + a2 %57, 2.1
D = D(f) = d(F) = a,,* — 4a,, a;,, (2.2)
whence obviously D < 0, D = 0 or 1 (mod4). For any positive integer @, f o a
(f represents a properly) means that there exist integers x; satisfying
Fxy, xp, x3) = a, g.c.d.(rp, X5, x3) = 1. (2.3)

sdusual, min f means inf{a: f > a}. F > ais defined in the same way as f o a,
én clearly min F > minf. We prove:

N Lemma 1. By a suitable integral unimodular substitution, the f of Theorem 1 may
€ supposed 1o satisfy

a;; = minf = min F, 0 <a, < a,, Q.4

and

]

ID(N)l = inf{|D(g)|: g ~ f, ming = a,,}. (2.5
These conditions imply

2a,,> < |d|, 3a,,> <D, and 3D* < 16a,,|d|. (2.6)
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Proof. 1t is trivial that we may assume (2.4), (2.5). For the first two of (2.6)
we use well known inequalities [1; 28-9, Theorem 17 and 14; Theorem 7] for the
minima of f, F. Now we write [ as

ay (xy + ry Xp 4 r3 X3)7 + P(xg, X3),

where r,, ry and the coefficients of y are rational, and we may clearly suppoge
miny = (1, 0), giving D = —4da,, ¥(1,0) = —4a,, miny; and clearly

d(f) = a; d@), 3(ming)* < [d@),

giving the last of (2.6), and completing the proof.
By expressing f as

F(x, + uy x5, X3 + 1y x3) + D™ 1dxy?,
with rational u,, u,, we see that
f>a and F D a imply |d| < a|D|. 2.7

For the hypotheses of (2.7) imply that (2.3) has a solution with {x3] = 1, which
cannot be unless D™'d < a. :
Further normalization of f is needed only in special cases:

Lemma 2. Suppose a;, = 1,a,, = Oor 1,and D = —4, —8, or —p, p a prime
= 3 (mod4). Then we must have

d# —1(mod4),d# —1,—3(mod8), or (d|p # —1 (2.9)
(Legendre symbol). Conversely, if a,,, a,,, D as above are given, and also d satisfying
(2.8), then there is just one possibility for f up to equivalence.

Proof. For suitable integers 4, k we use the substitution

Xy = Xy + hxs, Xy x; + kxs. 2.9

We may also, if necessary, put —x; for x3; and if D = — 4, F = x,2 + x,%, we may

interchange x,, x,, and a3, a,;.

Now if D = — 4 we may suppose 0 € a,3 < a,; < 1, whence both assertions
follow from (1.2), which reduces to d = a;3% + a,3% ~4day;. If D = — 8, we
suppose 0 < a5 < 1,0 € a3 < 2, and (1.2) reduces to d = 2a,,% + a,5* — 84a»

This is easily seen to be impossible if d = — 1 or — 3 (mod 8), and otherwise t0
determine a,3, a,3, d3; uniquely when d is given.
In the remaining case D = — p, a;, = I, a;, = 3(p + 1), (2.9) replaces di3

by a3+ 2h + k, whence we may clearly suppose a,; = 0. Then, putting
k = — 2h, we may replace a;3 = 0, a,; by 0, a,; — ph. So we may suppost
0 < a,; <4p. Then (1.2) reduces to d = a;,> — pas;, whence (d|p) = — | is
impossible and in other cases d determines a,;, a;;.

3. p-adic properties of f. With the notation of (2.1), (2.2), define (D |2) to be 0
if 2| D and otherwise 1, —1 for D = 1, -3 (mod 8); whence (even for p = 2),
(D|p) is unaltered by reducing the coefficients of F modulop. For any prime P
and any integer a, f o, a (in words, f represents a properly over the p-adic integefs)
may be defined to mean that, for every positive integer #, there exist integers X; such
that

f(x1, X3, x3) = a(modp’) and prg.c.d.(x;,x,, x;). 3.1
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(3-2)

Fo,a is defined in the same way; and we also define

e, (f) =1 1f pr 0, —1ifnot

We prove first:

Lemma 3. If pyaD,orif (Dip) =1, then F >, a. If (D|py = —1, then (for
integers Xy, x,), F(x;, x;) = 0 (mod p) implies x,,x, = 0, 0 (mod p).

Proof. With pt D, the partial derivatives of F are =0, 0 (mod p) if and only
if x;,x, =0, 0(modp). So the first assertion is easily deduced from Hensel’s
Lemma, since it is elementary that F = a (mod p) is soluble, and that x;, x, = 0,

0 (mod p) is not the only solution, for p|a, if (D{p) = 1. The second assertion is
_trivial.

We next prove:

LeMMaA 4. For ternary f with integer coefficients and p* ¥ d(f), p any prime, we
may suppose without loss of generality that (identically in the x;)

[y, X3, x3) = F(xy, X3) + a33 x> (mod p*) (3.3
and pX D, d= Day, (modp*). (3.9
';I'henf o, a holds for all a unless
(D|py=—1 and plas;. 3.5
In case (3.5), f =, a is false if and only if p|a and either p*laor
(p~'alp) = (p~'d|p) (3.6)

- the latter condition meaning a = d (mod 16) if p = 2.

Proof. 1t is clear from p? ¥d that the assumption p t D involves no loss of
generality. With it, we have (3.3), and so the second of (3.4), by a substitution
of the shape (2.9).

Now by using Lemma 3, as it stands and with @ — ay; for g, after putting
Xy = 0 or 1, we see at once that f >, a fails only if (3.5) holds and p|a. Assuming
(3.5) and p|a, the last part of Lemma 3, with p|a;; but p*> ¥ ay; by (3.4) and
p* kd, shows that f = 0 (mod p?) implies x,, x5, x; = 0,0,0 (modp); so f >, a
is false if p? | a.

) Supposing therefore, further, that p® Y a, it is trivially sufficient to take t = 4
in (3.1). With x,, x, = 0,0 (mod p) by the second part of Lemma 3, (3.1) may now
be written (with integers v, y; = p~'xy, p~! x,) as

PF(y1, y2) + p7layyxs® = p~la(modpl), pix; 3.7

I£p > 2 then (3.7) is insoluble if and only if

It

—(P_l ass| p),
= (p~'d|p

by (3.4). If p = 2, then F in (3.7) can be 0 or + 1, but not 2, modulo 4, by Lemma 3.
S0 (3.7) is insoluble if and only if

la=14a,; +2=3Dd+2 = —3d + 2 = 3d (mod 8),

(p~'alp)
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which completes the proof. Obvious corollaries are:

pXd implies ¢,(f) =1, (3.3
S>oa and pPla imply e,(f) =1, (3.9
P
and
pld and ptD imply &,(f) = (D|p). (3.10)

We next prove:

LEMMA 5. For f as in Theorem 1 and g satisfying the same conditions we haye -

f=gifand only if d(f) = d(g) and ¢,(f) = &,(g) for every p|d(f).

Proof. Suppose first that f = g. Then as noted in §1 we must have d(f) = d(g),
= d, say, and we may suppose without loss of generality that g = f(modd),
Then (3.8), (3.10) give e,(f) = ¢,(g) for all p (each 1 if p }d).

To prove the < if ’, we note first that if p ¥d we necessarily have

f~g ~x X, +dxy?
P 14
[t; 51, Theorem 29]. For p|d, it suffices to show that there are just two possibilities
for f under ~,, and that these have different ¢,(f), whence ¢,(f) = &,(g) gives
f ~, g One of these possibilities is f ~, x; x; + dx;% (which follows easily from

(3.5) if (D|p) = 1). To see that there is only one other is straightforward, but see
[1; 54, Theorem 32 and 59, Theorem 35].

4. Theorem 1, proof of sufficiency. We have to prove that if f ~ f;, for one of

the twenty f; of the theorem, then f ~ f;, giving ¢(f;)) = 1. Assuming f ~ f;, Lemma
5 gives

d=d(f)=d(f) and ¢,(f) =¢,(f) foreverypl|d. 4.1

By Lemma 1, we may also assume (2.4)-(2.6).

Since the table shows that minf; = I in all twenty cases, the first step is to show
that minf = a,, = 1. The second step is to show that D(f) = —3, —4, -7, =8,
—11, or —19, in the cases i = 1-6, 7-11, 12-14, 15-17, 18-19, 20 respectively;
whence trivially F = fi(x;, x5, 0). Then the third step, f ~ f,, is trivial by Lemma 2.

We use (2.6) to find a finite number of possibilities for the pair a,,, D; and then ’

use Lemma 4 and (3.9), (3.10) to show that all but one of these contradict (4-1)
or possibly (2.5). For example, if we assume a,, > 2 we have a,, = 3 in cases
i =17,20,d = —70, —78, and a contradiction otherwise. Thenifd = — 78 we have
e3(f) = —1by (4.1),d = 3 (mod9), and f =, 3 false by Lemma 4; contradiction:
Ifd = —70, we find by (2.6) that D = —27, —28, —31, or —32. But ay; = 3
is clearly inconsistent with D = —28 or —31 = —1 (mod 3). = —32 gives
F = 3x,% 4 2x, x, + 3x,2 o 4, whence f > 4. Then (3.9) gives

e (f) =1 +# & (fi7)

So D = —27, but this by (3.1) gives & (f) = 1 # e,(f,5). So a,, < 2; and
equality can be excluded by similar arguments. Then with a;, = 1| we exclude all
possibilities but one for D; I leave the details to the reader.

5. Theorem 1, proof of nccessity; possibilitics for F. We need:

LemMa 6. Let f be as in Theorem 1, with c(f)y =1, and let a be any positive
integer. T hen, sce (2.3), 3.0, f 2 aif aud only if [ 5, a for every prime p.

Proof. Since any solution of (2.3) necessarily satisfies (3.1) for all p, ¢, the
«only if 7 is trivial. Suppose therefore that (3.1) is soluble for all p, 1. Theng o a
for some g in the genus of f, as is well known, see {1; 80, Theorem 51]. That is

for some g =~ f(2.3) is soluble with g in place of /. But now using ¢(f) = I, g = f

implies g ~ f; whence clearly (2.3) is soluble as it is, and the lemma is proved.
Now assuming d{f) square-free and c(f) = I, we may also, by Lemma I,
assume (2.4)-(2.6), and we have to prove f equivalent to one of the f;. The first
step is to show that a; = 1. Since Lemma 4 gives f >, 1 for every p, f o 1 follows
by Lemma 6, so a;; = 1 by (2.4), and a,, = O or 1, = D (mod 2).
The second step is to show that D = —3, —4, —7, —8, —11, or — 19. We note
that (2.5), with a,;, a,2 as above, gives

a,, < inf{a:a>1, f>a}

5.1
(with equality unless a,; = 1). We have also
| f=>23o0r6 (5.2

For if f $ 2, then Lemma 6 gives f $,2 for some p, and Lemma 4 gives p = 2
and d = 2 (mod 16). Similarly, if f o 3, then d = 3 (mod 9); and if f > 6, then
either f >, 6 is false, giving the contradiction d = 6 (mod 16), or f >3 6 is false,
giving d = 6 (mod 9). So (5.2) is proved.

From (5.1), (5.2) we have a,, < 6, and D = —4da,, or 1 — 4a,, satisfies
ID| < 24. This gives twelve possibilities for D, F, six of which we have to exclude.

If D= —24, then e5(f) =1 by (3.8), (3.10), and the argument used for
(5.2) gives f >5 5 by Lemma 4, f o 5, a;, < 5, giving the contradiction [D| < 20.
Similarly, if D = —20, a,, = 5, we find f > 3, contradicting (5.1).

If D= —15 or —23, then &,(f) = 1 by (3.8), (3.10), f >, 2 by Lemma 4
(and f =, 2 is trivial for p > 2), so Lemma 6 gives f > 2, contradicting (5.1).
In the remaining cases D = —12, —16, F = x,* + 3x,7 or x.? + 4x,% o 4,
S = 4. Then (3.9) gives ¢,(f) = 1, and we argue as for D = —15, —23.

6. Theorem 1; completion of proof. The third and final step in the proof of the
*only if” is to find all the possibilities for f up to equivalence, for each of the six
Possibilities for D, F found in §5. But in each case, by Lemma 2, it suffices to find
the possibilities for d.

'For each of the six D, = -3, —4, =7, —8, —11, —19, we shall choose
Primes p, g such that
Dip= -1, Dl =1, qlp)=—1, 6.1

the last of these conditions meaning g # 1 (mod 8) if p = 2. From (6.1) and the
last part of Lemma 3, it follows that F » p and F 3 pg. From Lemma 4 and
(6.1), we see easily that f o, p and f o, pq are both true for every prime r # p,
and (6.1); shows that one of them, at least, holds for r = p. So, using Lemma 6,

/o]



102 G. L. WATSON
(6.1) implies f o> p or pq, f > p unléss pld and (p~'dlp) = 1. Then (2.7
shows that (6.1) implies
pq|D| always
ld| < (6.2
piD| unless pld and (p~'d|p) =1,

the latter condition meaning d = 2 (mod 16) if p = 2.

We note that some values of d below the bound of (6.2) may be excluded by
using other cases of (2.7), or by Lemma 2. Further, we note that since ¢(f) = 1is
assumed, g ~ f implies g ~ f and so (2.5) may be replaced by

ID(f)| = inf{|D(g)|: g = f, £(1,0,0) = 1}.
Using the foregoing arguments we dispose of the six cases one by one.

(6.3)

() D= —3,F=x2+xx+x"
With p =2, g = 7 in (6.1), (6.2) we find |d] < 42 and either |d| < 6 or

d = 2 (mod 16). Lemma 2 gives ¢(d|3) = O or 1, sod ="=2, =3, =5, —6, —14°

or —30. These six numbers being d(fy), ...,d(fe), f ~ one of fi, ..., fs follows
as noted at the beginning of this section.

(i) D= —4, F = x> + x,%

With p = 3,9 = 5, (6.1) holds and (6.2) gives |d|
to |d] < 12 unless d = 3 (mod9). Lemma 2 gives d
square-free. Obviously, by Lemmas 4, 6, f = 7 unless 7|d, so since F $ 7 we have
either |d| < 28 or 7|d, by (2.7).

This leaves us eight possibilities for d, five of which are the ones we want, see the
table, the other three being —2, —3, —11. In each of these three cases Lemma 2
shows that we can construct g with g(x,, x5, 0) = x,% + x; x, + x,*; and Lemma 5
shows easily that g ~ f (we have g ~ f by permuting the variables in the first two
cases). So the three unwanted cases are all excluded.

< 60 in all cases, improving

(i) D = —7, F = x,% + x, X, + 2x,%

(6.1) holds with p, g = 3, 2, so (6.2) gives |d| < 42 and either |d| < 21 or

d =3 (mod9). a= 5in (2.7) is easily seen to exclude d = —42. Lemma 2 gives
(d]7) = 0 or 1, and we can use (2.6); to give |d| > 10. Using Lemmas 2, 5asin
(i) we exclude d = —14, —17, —21; and similarly, but with D(g) = —4, We
excluded = —19. The surviving possibilities for d are just the three we want, namely
—10, —13, —33.

(ivi D= —8, F = x> + 2x,%.

We take p,q = 5, 31in (6.1), and (6.2) gives either |[d| < 40 ord = —55, -0,
—95 or —105. We note however that F 3 4, whereas f > 4 is clear from
Lemmas 4, 6 if d is odd. So using (2.7) with @ = 4, we find either |d| < 40 Of
d = —70; and since —70 = d(f,,) we may suppose |[d| < 40, and 2|d if |d] > 32
We have |d] > 12 by (2.6),, and |d| = 2, 5, 6, or 7 (mod 8) by Lemma 2.

It is now easily verified that Lemmas 2, 5 give a contradiction with 6.3) with

D(g) = —3 in cases d = —15, —23, =29, —38, D(g) = —4 ford = —14, -3l
—34, D(g) = —7ford = —13, —26. This leaves only the casesd = —21 = d(fish
—22 = d(f,e), and d = —30, which must be excluded.

1 or 2 (mod4), since d is.

_ e

(See also §8, below, for some notation used in [2].)

We construct the form
g = 2x 24+ x, X3 + 3x,7 + 2x, x5 + 20 X + 2x3%,
with d(g) = —30 and D(g) = —23, whence it is easily seen that with d(f) = =30
and D(f) = —8 we have f = g, and so, with e(f) =1, f~g Now(2.7) with I,
g fora, f give the contradiction |d| < 23 < 30.
v) D= -1 F = x, 2+ xp xy + 337
From (6.1) with p, ¢ = 2, 3, and (6.2), we have |df < 66. (5.1) gives f $ 2,
d = 2 (mod 16), and Lemma 2 gives (d|11) = Q0 or I, s0d = —30, —46, or —62.
— _62 can be excluded by (6.3), with D(g) = —3. Sod = —~300r —46 = d(f,s)
Orld(fw)- _
(i) D= —19, F = x;* + x, x; + 5x,%.
Here (5.1) gives f $ 2,3s0d = 2 (mod 16), 3 (mod 9), —78 (mod 144). (5.2)
gives f > 6, so with F 6 (2.7) gives |d| < 114, so d = —78 = d(f;,), and
this completes the proof of Theorem 1. .

7. Ternary forms with d not square-free. Let the ternary form f have integer
coefficients and d # 0; and suppose f primitive. For any prime p, there are two

" possibilities: (i), p does, (ii), does not, divide all the elements of the matrix adj A(f)

[in case p = 2, this is equivalent to p does, does not, divide all three of a,,, ay3, a,;].
~ In case (i), we must have p2|d, and may clearly suppose, by an integral uni-
modular transformation, that (identically in the x;)

S= allxlz (modp), ptay,. 7.D

In case (i), we may suppose p 4 D, and then, as in Lemma 4, that (3.3) holds,
whence if p? |d we have

_ f= F(modp?, piD. (7.2)

In case (7.1), define
8 = g(Xy, Xz, X3) = P—If(le, X35 X3)- (7.3)

In case (7.2), define
g = g(xy, X3, x3) = p~* f(pxy, PXz, X3)- (7.4

In ea;h of these cases, note that g has integer coefficients and that d(g) = ptd(fH)
or p~2d(f) satisfies

’ ld(g)l < (). ' (7.5
: T&king r=3and m = pin [2; 579, Theorem 1}, we also have
c(g) < c(f). (7.6

Fooking at (7.5), (7.6), we see that by repeating the argument, with suitable
choice of p at each step, we have always

c(f) =z c(fo), with d(fo)

and f equivalent over the rationals to a multiple of f.
€orem 1 and (7.7) give e¢(f) > 1 unless

fo ~ oneof fy, ...

square-free, NN

Supposing f positive,

» fa0- (7.8)

(O
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Now I could prove:

TureoreM 2. There are just 787 possibilities up to equivalence for a positire-deﬁn”e
ternary quadratic form f, primitive and with integer coefficients, which has class-numpe, 1

To prove Theorem 2, one has to examine the cases of equality in (7.6).
unfortunately these are rather numerous. There are however certain simpliﬁcatio,]sj
First, we need only consider cases in which repetition of the argument leading ¢4
(7.6) leads to the case (7.7), (7.8). Further, in going back from f, to f, if Strict
inequality holds in (7.6) at a late step, one need not consider earlier steps. So, for
most of the argument, one is concerned with f such that p? |d for only one prime p’
and which does not behave too badly even for that p. Then the arguments useg
for Theorem 1 need only small modifications. I am still trying to simplify the
arguments, and also to present the result more concisely, so as to avoid listing all the
787 possibilities individualiy.

8. One-class n-ary, positive-definite, genera with n # 3. The case n = 1 is trivial,
and n > 11 has been dealt with in [3) (the class-number is always > 2). The case
n = 2 is very difficult, and I have not been able to deal with it. So in what follows
4 < n < 10is assumed; and d = d(f) is defined as in (1.2), but with the factor
—4 replaced by (=D if 2|n, H{(—D¥ *if 2 fn.
pld. We outline some notation and results of [2].

We transform a given form f into an equivalent form of the shape
f(o)(xn e X))+ pZ{bij xxrl<ig<r<js n} + pf(l)(xr+1’ cees Xl

(8.1)

where £, f) are forms with integer coefficients, the b;; are integers, and r = r,(f)
is as small as possible. This last condition is equivalent to p ¥ d(f).

Now we say that f is strongly primitive (SP) if r,(f) = 4n for every p. fis
p-adically square-free if, and only if, f is equivalent to a form of the shape (8.1)
with r minimal, i.e. = r,(f), and also r,(f) = n — 7, that is, with p fd(f*).
Finally, f is square-free (SF) if it is p-adically square-free for every p.

Now for each n from 4 to 10 I have proved an analogue of Theorem 1, with the'™

assumption that f is SF and SP in place of d square-free (the two assumptions are
easily seen to be equivalent when n = 3). These results involve just 67 classes. [
have so far worked out the analogue of Theorem 2 only for n = 9, 10.
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Suppose also f primitive and

CLASS GROUPS FOR INTEGRAL REPRESENTATIONS
OF METACYCLIC GROUPS

S. GALOVICH, 1. REINER an~D S. ULLOM

1. Introduction. Let R be a Dedekind domain whose quotient f'lcld' Kisan a]gebrgic

Ber field, and let A be an R-order in a semisimple K-algebra A with 1'. A A-lattice
Pumﬁnitely generated R-torsionfree left A-module. We shall call a A-lattice M locally
ls; of rank n if for each maximal ideal p of R, M, is A,-free on n ger'\erators. (T_hc
{:xbscript p denotes localization.) The (locally free) class group of A is the additive
group C(A) generated by symbols

Xy = [Al-[M], M = locally free rank 1 A-lattice,

i

where » .
X, + Xag, = Xy, Whenever M +M, =AM,

and where xy = 0 if and only if M is stably free (that is, M + A® = A 4 AW for

some k). . .
Let ZG be the integral group ring of a finite group G. A number of recent articles

have been devoted to the calculation of the class group C(ZG) for various groups G

(see Fréhlich [1], Kervaire and Murthy (3], Martinet {3], Reiner and Ullom {7, 8},
and Ullom [11}). For the most part, it is only in rare cases that the order '[C(ZG)i
can be computed explicitly. In such cases, the formula for [C(ZG)| usually mvollves
the ideal class numbers of certain cyclotomic fields, and makes use of detailed
information about units in integral group rings. ' .

The purpose of this note is to compute C(ZG) for the case where G is a metacyclic
group of order pg. Let

a.p
where p is an odd prime, g is any divisor ofp—1l,andrisa primitive g-th root of
1 mod p. Let @ be a primitive p-th root of 1 over Q, and set K = Q(w), R = Z_[w];
thus R = alg. int.{K}, the ring of all algebraic integers in K. Let L be the unique
‘subfield of K such that (K: L) = g, and put S = alg. int. {L}. Denote by C(S) the
ideal class group of S. Let H = {y), a cyclic group of orderg.

Our main resuit is

G={x,y:x" =11 =Lyxy ' =x7,

ﬂ .2) TueorReM. There is an epimorphism
C(ZG) - C(S) + C(ZH).

* whose kernel Dy(2G) is a finite cyclic group of order ¢, q odd, and of order g/2, q even.

The case where g = 2 is already known (see Lee [4], Reiner and Ullom [7, 8)).

Tt is rather surprising that such an explicit formula can be obtained, especially since

as yet there is no analogous result for the seemingly simpler case of a cyc.lic group
of order pg, with p,q distinct primes. When g is prime, we know from Rim [9] or
Reiner (6] that C(ZH) = C(R’), where R’ = alg. int. {K'}, and K' = Q(?Jh. For

The last two named authors were partially supported by a contract with the National Science
Foundation.
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