MR655728 (83h:10053) 10C99
Schulze-Pillot, Rainer

Darstellung durch definite ternäre quadratische Formen. (German. English summary) [Representation by definite ternary quadratic forms]

J. Number Theory 14 (1982), no. 2, 237-250.

M. Kneser's method of "adjacent lattices" [Arch. Math. (Basel) 8 (1957), 241-250; MR0090606 $(19,838 \mathrm{c})]$ is applied to the problem of finding the integers represented by a ternary positive definite integral quadratic form. A list of 14 such forms is given which have the property of representing primitively all integers which are represented primitively by the genus-the list extends significantly earlier results of G. L. Watson [J. London Math. Soc. (2) 13 (1976), no. 1, 97-102; MR0414489 (54 \#2590)]. Let p be a prime and let L be a ternary positive definite lattice such that $\mathbf{Z}_{p} \otimes L$ is semiregular. Define a graph as follows: the vertices are the lattices on $\mathbf{Q} \otimes L$ which are in the genus of L and which differ from L only at p; two lattices (vertices) are joined by an edge if they are adjacent in Kneser's sense. This graph turns out to be the Bruhat-Tits building of the group $\operatorname{Spin} V_{p} \cong \mathbf{S L}_{2}\left(\mathbf{Q}_{p}\right)$.

Reviewed by Carl Riehm
(C) Copyright American Mathematical Society 1983, 2008

