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1 Introduction

In this p ap e r w e ar e alw ay s d e aling w ith q u ad ratic fo r m s w ith re al co e ffi cie nts b u t
it w o u ld n’t m ak e any d iff e r e nce to co ns id e r o nly ratio nal f o r m s . T he no tio n o f
e q u iv ale nce is that o v e r

�
, i.e . f o r n - d im e ns io nal f o r m s w e d e fi ne f ∼ � g ⇐⇒

∃ T∈GLn (
�

) : f (Tx) = g(x). W he n w e r e f e r to the co e ffi cie nts o f a f o r m f w e
r e f e r to its G ram m atr ix i.e . f (x) =

∑
i fii x 2

i + 2
∑

i≤j fij xi xj . T he n - d im e ns io nal

f o r m s ar e e m b e d d e d into � n(n+1)/2 b y the co e ffi cie nts fij w ith i ≤ j .

Definition 1.1 The representation number AX (f , t) of a real number t ∈ � +
0 by

an n-dimensional positive definite form f with respect to a set X ⊂
� n is

AX (f , t) = ] {x ∈ X : f (x) = t}

A(f , t) = A � n (f , t)

It is w e ll k no w n that b inary p o s itiv e d e fi nite f o r m s ar e d e te r m ine d u p to
inte g ral e q u iv ale nce b y the ir s e r ie s o f r e p r e s e ntatio n nu m b e r s (the the ta s e r ie s ).
W e k no w e v e n m o r e : U p to a facto r and o r d e r the r e is o nly o ne p air o f clas s e s
o f ine q u iv ale nt p o s itiv e d e fi nite b inary f o r m s w ith the s am e s e t o f r e p r e s e nte d
nu m b e r s (w itho u t m u ltip licitie s ). S e e [ W at] f o r a p r o o f and r e f e r e nce to o ld e r
r e s u lts . In hig he r d im e ns io ns the r e ar e co u nte r e x am p le s . E .W itt p r o v e d that the r e
are tw o clas s e s o f p o s itiv e d e fi nite e v e n u nim o d u lar f o r m s o f d im e ns io n 16
w hich hav e the s am e r e p r e s e ntatio n nu m b e r s [ W it] . S ince the n s u ch e x am p le s
w e r e f o u nd in d im e ns io ns 12, 8 and 4 ([ K ne ] ,[ K it] ,[ S ch1]). C o nw ay and S lo ane
[ C o n] f o u nd a 4 –p aram e te r fam ily o f p air s o f q u ate rnary f o r m s w ith the the ta
s e r ie s o f b o th fo r m s b e ing e q u al. E x am p le s s u g g e s t that the f o r m s o f the s e p air s
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are inequivalent (at least if some inequalities for the parameters hold), but this
is not known in general.

In her thesis [Suw] Suwa-Bier shows that there are at most 4 pairwise in-
equivalent positive definite ternary forms belonging to a given theta series. The
proof is divided into many distinct cases in some way similar to the calculations
presented here. She gives also a short proof for “at most 30”.

Our aim is to find a bound b(f ) with

A(f , t) = A(g, t) ∀t ≤ b(f ) =⇒ f ∼ � g (1)

where f , g are ternary positive definite forms. For such forms there is a well
known fundamental domain, the Seeber-Eisenstein reduced forms, containing
exactly one representative of each class (see [Eis] or [O’M] p.142f). The set of
Eisenstein reduced forms in

� 6 is the union of two convex cones. We choose
other representatives by a piecewise linear map that doesn’t change the classes
and defines a bijection to one convex cone in

� 6 which we denote by V . In Def-
inition 2.1 we give the linear conditions which define this fundamental domain
V . By restricting ourselves to reduced forms we can replace the notion of inte-
gral equivalence by equality. To exploit the condition A(f , t) = A(g, t)∀ t∈

� +
0 on

(f , g) ∈ V × V we divide V into domains of forms with finitely many prescribed
successively minimal vectors. It is sufficient to consider only representation num-
bers with respect to � 3

∗
(by which we denote the set of primitive vectors in � 3

with the last nonzero coefficient being positive). Let x1, . . . , xj ∈ � 3
∗

be the first
j successively minimal vectors of f , i.e. f (xi ) = min f

(

� 3
∗
\ {x1, . . . , xi−1}

)

,
and y1, . . . , yj those of g. The equality of the representation numbers leads to
f (xi ) = g(yi ). These are linear equations with integral coefficients in the variables
fij , gij .

In Sect. 2 we describe the subdivision of V into domains with finitely many
prescribed successively minimal vectors. The main problem is to describe the
refinement of such a subdivision to one with one more prescribed minimal vector
in each member. In any case we give a finite set of vectors sufficient to be taken
into account as the next minimal ones.

Definition 1.2

∆ = {(f , f ) ∈ V × V }

D = {(f , g) ∈ V × V : A(f , t) = A(g, t)∀ t∈
� +

0}

w h e r e V d e n o te s th e c lo s u r e o f V ⊂
� 6.

In Sect. 3 we define a decreasing series ( � i ) of coverings of D that can be
explicitly computed, each refining its predecessor. The member sets of these
coverings contain pairs of forms with prescribed minimal vectors and the re-
finement is done, roughly said, by choosing the next minimal vectors. These
coverings approximate D in the sense that D =

⋂

i

⋃

T∈ � i
T ∩ (V × V ). By ex-

plicitly computing them with a computer it turns out that after finitely many
steps each member set is contained in the diagonal ∆. To achieve this, we
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must take care of the following situation: There are pairs of forms with any
given number of the first successively minimal vectors lying in 〈e1, e2〉 � (the
2-dimensional sublattice spanned by the unit vectors e1 and e2). Involving only
minimal vectors from this sublattice the equality of the theta series only im-
plies f|〈e1,e2〉 � = g|〈e1,e2〉 � after a limited number of steps, but not f = g. Thus
any T ∈

�
i with f|〈e1,e2〉� = g|〈e1,e2〉� ∀ (f , g) ∈ T is refined by considering

successively minimal vectors only from � 3
∗ \ 〈e1, e2〉 � . We still get equations

from the minimal vectors because (f , g) ∈ D and f|〈e1,e2〉 � = g|〈e1,e2〉 � implies
A � 3

∗
\〈e1,e2〉 � (f , t) = A � 3

∗
\〈e1,e2〉� (g, t). The sublattice 〈e1, e3〉 � is treated the same

way.
An explicit bound b(f ) for which (1) holds is given in Theorem 4.4 and 4.5.

In the case of forms with integral coefficients the theory of modular forms gives a
bound for the number of coefficients of a theta series which determine that series
among all theta series belonging to forms with the same level. Theorem 4.4 also
gives a bound for the coefficients that determine the theta series of an arbitrary
positive definite ternary form with real coefficients among all other theta series
belonging to ternary forms (possibly with other determinant), thus including the
case of theta series that are not modular forms.

With the constructive subdivision of V into domains of forms with prescribed
successively minimal vectors we can also answer the question, which ternary
positive definite forms have given representation numbers in an interval [0, t].

2 Successively minimal vectors

First we state how to identify the class of a form from its Gram matrix. We recall
that a positive definite quadratic form f in n variables is Minkowski reduced iff

∀k = 1 . . . n ∀ x∈ � n
(

gcd(xk , . . . , xn ) = 1 =⇒ f (x) ≥ fkk
)

(2)

For forms of dimension n ≤ 4 we can replace in (2) ∀ x∈ � n by ∀ x∈{−1, 0, 1}n

(see [Min]p.78). We obtain the following reduction conditions from Eisenstein’s
by a piecewise linear map that folds up the two convex cones of the Eisenstein
reduced forms to one convex cone which is computationally easier to handle. This
map is bijective and does not affect the classes. Thus in every class of ternary
positive definite forms there is exactly one representative satisfying Definition
2.1 as well as exactly one Eisenstein reduced form. For the original Eisenstein
conditions see [Eis], [O’M] p.142f or [Sch2] where the piecewise linear map and
a reduction procedure is described.

Definition 2.1 We say that a positive definite ternary form f is reduced iff the
following conditions are satisfied.

1. f is Minkowski reduced
2. f12 ≥ 0 , f13 ≥ 0 and (f12 = 0 ∨ f13 = 0) =⇒ f23 ≥ 0
3. f11 = f22 =⇒ |f23| ≤ f13

f22 = f33 =⇒ f13 ≤ f12
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4. f11 + f22 − 2f12 − 2f13 + 2f23 = 0 =⇒ f11 − 2f13 − f12 ≤ 0
2f12 = f11 =⇒ f13 ≤ 2f23

2f13 = f11 =⇒ f12 ≤ 2f23

2f23 = f22 =⇒ f12 ≤ 2f13

2f23 > −f22

The set of reduced forms is denoted by V .

The closure of V ⊂ � 6 is a convex cone spanned by the 11 forms from the
sets M1 and M2, i.e. V = {

∑

λi fi : fi ∈ M1 ∪M2, λi ∈ � +
0}, w here

M1 =

{
(

0 0 0
0 0 0
0 0 1

)

,

(

0 0 0
0 2 ±1
0 ±1 2

)
}

M2 =

{
(

2 0 0
0 2 ±1
0 ±1 2

)

,

(

2 0 1
0 2 ±1
1 ±1 2

)

,

(

2 1 0
1 2 ±1
0 ±1 2

)

,

(

2 1 1
1 2 0
1 0 2

)

,

(

2 1 1
1 2 1
1 1 2

)
}

Lemma 2.2 L et f ∈ M2, x = (x1, x2, x3) ∈ � 3. Then f (x) ≥ ‖x‖2
∞,

w here ‖x‖∞ = max{|x1|, |x2|, |x3|}.

P roof. Since f ∈ M2 w e have fii = 2 and fij ∈ {−1, 0, 1} for i /= j . L et {i , j , k} =
{1, 2, 3} such that |xi | = max{|x1|, |x2|, |x3|}. Then |xj xk | = minν<µ{|xνxµ|}.
N ow for f ∈ M2 either one of f12, f13, f23 is 0 or (f12, f13, f23) = (1, 1, 1). In both
cases at most tw o of the terms f12x1x2, f13x1x3, f23x2x3 can be neg ative and their
sum has the low er bound −|xi xk | − |xi xj |. N ow

f (x) =
∑

ν

fννx 2
ν + 2

∑

ν<µ

fνµxνxµ ≥
∑

ν

2x 2
ν − 2|xi xk | − 2|xi xj |

= 2(1/2 |xi | − |xk |)
2 + 2(1/2 |xi | − |xj |)

2 + x 2
i ≥ ‖x‖2

∞

ut

Definition 2.3 L et x, y ∈ � 3, X , Y ⊂ � 3. L et

x � y (resp . y � x) :⇐ ⇒ ∀ f ∈V : f (x) ≤ f (y)

X 6�Y = {x ∈ X : ∀ y∈Y : x 6� y}

M I N (X ) = {x ∈ X : ∀ y∈X : (y � x =⇒ y = x)}

M I N (X ) is the set of minimal elements of X related to the order relation �.
E very seq uence x1 � x2 � . . . is eventually constant. Thus every nonempty
set has minimal elements. F or every X ⊂ � 3 the set M I N (X ) is fi nite and can
be determined effectively (this is true for the analog ous defi nition for arbitrary
dimensions w ith the notion of M ink ow sk i reduction as w ell). F or special X ⊂ � 3

w e mak e this explicit g iving an a priori bound for M I N (X ).

Lemma 2.4 1 . L et a ∈ � , x = (x1, x2, x3) ∈ � 3 w ith (x2, x3) /= (0, 0). Then
x 6� (a, 1, 0) =⇒ ‖x‖∞ <

√

2(a2 + max(a, 0) + 1).
2 . L et x ∈ � 3 w ith x3 /= 0. Then

x 6� (a, 0, 1) =⇒ ‖x‖∞ <
√

2(a2 + max(a, 0) + 1).
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3. Let x ∈ � 3 with x2 /= 0 and x3 /= 0. Then
x 6� (a, sgn(x2x3), 1) =⇒ ‖x‖∞ <

√

2(a2 + |a| + max (a, 0) + 3)
(where sgn des ig nates the s ig n fu nc tio n).

P r o o f. Th e conditions on x imply f (x) ≥ f (x0) ∀ f ∈M1, w h ere x0 = (a, 1, 0),
(a, 0, 1), (a, sgn(x2x3), 1) in th e cases 1,2,3 of th e lemma respectively. F or all x
satisfying th e assumptions w e h ave

x 6� x0 ⇐ ⇒ ∃ f ∈V : f (x) < f (x0)

⇐ ⇒ ∃ f ∈M1 ∪M2 : f (x) < f (x0)

⇐ ⇒ ∃ f ∈M2 : f (x) < f (x0)

N ow th e assumption follow s from L emma 2.2 and estimating f (x0) for f ∈ M2.
ut

D efi n it io n 2 .5 F o r a ∈ � let

� 3
∗ =

{

x ∈ � 3 \ {0} : gcd(x) = 1 and (∀i > k : xi = 0) =⇒ xk ≥ 0
}

W1,a =
(

� 3
∗

) 6 � { (a,1,0)}
∪ {(a, 1, 0)}

W2,a =
(

� 3
∗ \ 〈e1, e2〉 �

) 6 � { (a,0,1)}
∪ {(a, 0, 1)}

W3,a =
(

� 3
∗ \

(

〈e1, e2〉 � ∪ 〈e1, e3〉 �
)) 6 � { (a,−1,1),(a,1,1)}

∪ {(a,−1, 1), (a, 1, 1)}

B ecause of th e symmetry f (x) = f (−x) and f (kx) = k 2f (x) w e can restrict
ourselves to representation numb ers w ith respect to � 3

∗. Th e numb ers A � 3 (f , t)
for t ≤ t0 determine th e numb ers A � 3

∗

(f , t) for t ≤ t0 and vice versa. L emma 2.4
implies

Wi ,a ⊂ {x ∈ � 3
∗ : ‖x‖2

∞ < 2
(

a2 + max (a, 0) + 1
)

} for i = 1, 2

W3,a ⊂ {x ∈ � 3
∗ : ‖x‖2

∞ < 2
(

a2 + |a| + max (a, 0) + 3
)

}

L em m a 2 .6 Let ∅ /= Y ⊂ X ⊂ � 3
∗ and W ⊃ X 6� Y ∪ Y .

Then M I N (X ) = M I N (X ∩W ).

Th e L emma is a consequence of � b eing an order relation.

C o r o lla r y 2 .7 F o r X ⊂ � 3
∗ the fo llo wing ho lds :

1 . (a, 1, 0) ∈ X =⇒ M I N (X ) = M I N (X ∩W1,a ).
2 . X ⊂ � 3

∗ \ 〈e1, e2〉 � and (a, 0, 1) ∈ X =⇒ M I N (X ) = M I N (X ∩W2,a ).
3. X ⊂ � 3

∗ \
(

〈e1, e2〉 � ∪ 〈e1, e3〉 �
)

and {(a,−1, 1), (a, 1, 1)} ⊂ X
=⇒ M I N (X ) = M I N (X ∩W3,a ).

D efi n it io n 2 .8 Let X ⊂ � 3
∗, and x1, . . . , xk ∈ X p air wis e different. We defi ne

K (X , x1 . . . xk ) to b e the s et o f fo r m s in V with (no t nec es s ar ily linear indep endent)
s u c c es s iv ely m inim al v ec to r s x1, . . . , xk ∈ X , i.e.

K (X , x1 . . . xk ) = {f ∈ V : f (xi ) = min f
(

X \ {x1, . . . , xi−1}
)

∀i = 1 . . . k}

F o r k = 0 let K (X ) = V .
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It is easy to see that

K (X , x1 . . . xk ) = {f ∈ V : f (x1) ≤ . . . ≤ f (xk ) and

f (xk ) ≤ f (x) ∀ x∈M IN
(

X \ {x1, . . . , xk}
)

} (3)

W e w ill alw ays consid er K (X , x1 . . . xk ) w here X is one of � 3
∗, � 3

∗ \ 〈e1, e2〉 � or
� 3
∗ \

(

〈e1, e2〉 � ∪ 〈e1, e3〉 �
)

. B y C orollary 2.7 w e k now M IN
(

X \{x1, . . . , xk}
)

=
M IN

(

(X\{x1, . . . , xk})∩Wi ,a
)

for ap p rop riate a ∈ � . Since M IN
(

X\{x1, . . . , xk}
)

is fi nite and V is d efi ned b y fi nitely many linear ineq u alities the set K (X , x1 . . . xk )
is the intersection of fi nitely many op en or closed halfsp aces.

L em m a 2 .9 L e t X , x1, . . . , xk b e as in D e fi nitio n 2 .8 and X \ {x1, . . . , xk} /= ∅.
Th e n

K (X , x1 . . . xk ) =
⋃

y∈M IN (X \ { x1,. . . ,xk})

K (X , x1 . . . xk , y)

P ro o f. L et f ∈ K (X , x1 . . . xk ) and

Yf = {x ∈ X \ {x1, . . . , xk} : f (x) = min f
(

X \ {x1, . . . , xk}
)

}

T hen ∅ /= M IN (Yf ) ⊂ M IN (X \{x1, . . . , xk}). N ow for any y ∈ M IN (Yf ) w e hav e
f ∈ K (X , x1 . . . xk , y). T he other inclu sion is triv ial. ut

3 C o v er in g s o f D by p o lyh ed r al c o n es

C onsid er the n - d imensional E u clid ean sp ace w ith scalar p rod u ct ‘ · ’ .

D efi n it io n 3 .1 L e t T ⊂ � n . We s ay th at T is a ratio nal p o ly h e d ral c o ne iff th e re
are fi nite s e ts A,B ⊂ � n s u c h th at

T = T n (A,B ) =
⋂

a∈A

{x ∈ � n : x · a ≥ 0} ∩
⋂

b∈B

{x ∈ � n : x · b > 0}

Th e d im e ns io n o f T is th e s m alle s t d im e ns io n o f a line ar s u b s p ac e c o ntaining T .

G iv en A,B and a rational su b sp ace U ⊂ � n there are w ell k now n alg orithms to
d ecid e w hether T (A,B ) ⊂ U . In fact, w e alw ays comp u te the ed g es of T , i.e. a
minimal fi nite set E (T ) = {x1 � +

0 , . . . , xr � +
0} w ith T =

∑r
i=1 xi � +

0 .
F rom now on w e consid er p olyhed ral cones T ⊂ � 6 × � 6 of p airs of almost

red u ced forms, i.e. T ⊂ V × V ⊂ � 12. T he intersection T ∩ (V × V ) is in
g eneral not a p olyhed ral cone, b ecau se the cond itions (on b oth forms) f ∈ V
imp ly fi nitely many cond itions (Uν , bν) of the k ind f ∈ Uν =⇒ f · bν > 0 for
some su b sp aces Uν ⊂ � 6 and bν ∈ � 6 w ith ind ices, say ν ∈ J , g iv en b y the
red u ction cond itions.

L em m a 3 .2 G iv e n T = T 12(A,B ) ⊂ V × V w e fi nd a p o ly h e d ral c o ne TV ×V

w ith

T ∩ (V × V ) ⊂ TV ×V ⊂ T and T ∩ (V × V ) = TV ×V
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Proof. We construct the set TV ×V by taking into account only those reduction
conditions that affect the closure. Let I1(T ) =

{

ν ∈ J : T ⊂ Uν × � 6
}

and
I2(T ) =

{

ν ∈ J : T ⊂ � 6 × Uν

}

. Let

φ(T ) = T ∩
⋂

ν∈I1

{(f , g) : f · bν > 0} ∩
⋂

ν∈I2

{(f , g) : g · bν > 0}

Clearly T ⊃ φ(T ) ⊃ T ∩ (V × V ). Consider the sequence T0 = T , Ti+1 = φ(Ti ).
This sequence becomes stable since dimφ(T ) = dim T =⇒ φ(φ(T )) = φ(T ).
The limit has the properties claimed for TV ×V . ut

Now we define a sequence of finite coverings � i of D with polyhedral cones
where � i+1 is finer than � i and

⋂

i∈ � 0

⋃

T∈ � i

T ∩ (V × V ) = D

Let � 0 =
{

(V × V )V ×V
}

. Let � be any covering of D such that for each T ∈ �
there is a k = k (T ) ∈ � 0 with

P 1: T is a polyhedral cone and T = TV ×V .
P 2: Let Λ = Λ(T ) be one of ∅, 〈e1, e2〉 � , 〈e1, e2〉 � ∪ 〈e1, e3〉 � and let Λ be max imal

with f|Λ = g|Λ ∀ (f , g)∈T . Let X = � 3
∗ \ Λ. There are x1 . . . xk , y1 . . . yk ∈ X

(belonging to T ) with

T ⊂ K (X , x1 . . . xk ) × K (X , y1 . . . yk )

T ⊂
{

(f , g) ∈ V × V : f (xν) = g(yν) ∀ν = 1, . . . , k (T )
}

Then a refinement � ′ of � may be constructed as follows:
Let T ∈ � with k , Λ, x1 . . . xk , y1 . . . yk as in P 2. We define a covering � T of
T ∩ D by:

– If T ⊂ ∆ let � T = {T} (with the same k )
– If T 6⊂ ∆: F or x ∈ M IN

(

X \ {x1, . . . , xk}
)

, y ∈ M IN
(

X \ {y1, . . . , yk}
)

let

Sxy =
[

T ∩ (K (X , x1 . . . xk , x) × K (X , y1 . . . yk , y))
]

V ×V

Txy =
[

Sxy ∩ {(f , g) ∈ V × V : f (x) = g(y)}
]

V ×V

Let Λxy = Λ(Txy) ∈ {∅, 〈e1, e2〉 � , 〈e1, e2〉 � ∪ 〈e1, e3〉 � } be max imal with
f|Λxy = g|Λxy ∀ (f , g)∈Txy. Let Xxy = � 3

∗ \ Λxy.
– If Λxy = Λ let k (Txy) = k (T ) + 1.
– If Λxy /= Λ: Let xk+1 = x, yk+1 = y. Let 0 ≤ r ≤ k + 1 be max imal with

]
(

{x1, . . . , xr} \ Λxy
)

= ]
(

{y1, . . . , yr} \ Λxy
)

= g and let k (Txy) = g.
D efine

� T =
⋃•

x∈M IN(X \ { x1 , . . . , xk})
y∈M IN(X \ { y1 , . . . , yk})

{Txy} (4 )
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where
⋃•

denotes the disjoint union. All Txy ∈ � T have properties P1 and
P2 (with the number k (Txy) we defined) and we have

T ⊃
⋃

x∈MIN(X\{x1,...,xk})
y∈MIN(X\{y1,...,yk})

{Sxy} ⊃ T ∩ (V × V )

Let (f , g) ∈ Sxy ∩ D . Since f|Λ = g|Λ we have AX (f , t) = AX (g, t)∀ t∈ � +
0 and

f (x) = min f
(

X \ {x1, . . . , xk}
)

= min
{

t0 ∈ � +
0 :

∑

0≤t≤t0

AX (f , t) ≥ k + 1
}

= g(y)

Thus
T ⊃

⋃

x∈MIN(X\{x1,...,xk})
y∈MIN(X\{y1,...,yk})

{Txy} ⊃ T ∩ D

Finally let

� ′ =
⋃•

T∈ �
� T (5)

By construction
� ′ is a refinement of

�
that covers D and each T ∈

� ′ has
properties P1 and P2 with the number k (T ) we defined above.

Definition 3.3 Let (
�

i ) be the series starting with
�

0 =
{

(V × V )V ×V
}

as abo v e
and

�
i+1 =

� ′
i ∀i ≥ 0.

The sets Txy and T ′
x′y′ coming from different T or different pairs (x, y) may have

the same elements but the construction may lead to different numbers k (Txy) and
k (T ′

x′y′ ). For notational convenience (to obtain a function k (T )) we defined � T

and
� ′ (in (4),(5)) to be the disjoint union of the belong ing Txy, thus identifying

the members T ∈
�

i not only by their elements but also by the way they are
constructed.

Definition 3.4 G iv en f ∈ V , k ∈ � >0 let

ψ(f , k ) = max
{

t ∈ f ( � 3
∗) ∪ {0} :

∑

s≤t

A � 3
∗

(f , s) < k
}

This is well defined since f is positive definite and for each f ∈ V we have
ψ(f , k )

k → ∞
− → ∞ .

L em m a 3.5 Let i ≥ 3, ∆ 6⊃ T ∈
�

i , (f , g) ∈ T ∩ (V × V ). Then

A � 3
∗

(f , t) = A � 3
∗

(g, t) ∀t ≤ ψ
(

f ,
[

i/3
] )

where [x ] d eno tes the biggest integer ≤ x .
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Proof. Let T0 ⊃ . . . ⊃ Ti−1 ⊃ Ti = T be the sets Tj ∈ � j above T . Let kj = k (Tj ),
Λj = Λ(Tj ) as in P2. The sequence

(

Λj
)

increases and has at most 3 values. Thus
there is a section Λν = . . . = Λµ of length µ− ν + 1 ≥ (i + 1)/3. Since Tj 6⊂ ∆
and Λj = Λj+1 implies kj+1 = kj + 1 we have kµ = µ − ν + kν ≥

[

i/3
]

. Let
x1 . . . xkµ , y1 . . . ykµ ∈ � 3

∗ \ Λµ such that P2 holds. For all t < f (xkµ ) holds

A � 3
∗

(f , t) = AΛµ∩ � 3
∗

(f , t) +A � 3
∗
\Λµ (f , t)

= " +] {1 ≤ j < kµ : f (xj ) = t}

= AΛµ∩ � 3
∗

(g, t) +A � 3
∗
\Λµ (g, t) = A � 3

∗

(g, t)

Now the assertion follows from ψ
(

f ,
[

i/3
])

≤ ψ(f , kµ) < f (xkµ ). ut

Corollary 3.6
⋂

i∈ � 0

⋃

T∈ � i
T ∩ (V × V ) = D.

4 Results

By explicitly computing the sequence ( � i ) we get the following

Theorem 4.1 The sequence ( � i ) becomes stable and for i ≥ 14 we have
T ⊂ ∆ ∀ T∈ � i . Thus D ⊂ ∆.

We can extract from the computation a bound b(f ) such that for all f , g ∈ V
holds A � 3

∗

(f , t) = A � 3
∗

(g, t) ∀t ≤ b(f ) =⇒ f = g.

Definition 4.2 For a positive definite n-dimensional quadratic form f let

si (f ) = min
{

f (x) : ∃x1, . . . , xi ∈ � 3 lin. independent with f (xν) ≤ f (x)
}

be the successive minima of f .

For a Minkowski reduced form f of dimension ≤ 4 we have si (f ) = fii (see
e.g.[Wae]). We shall find an optimal linear bound in the diagonal coefficients of
the kind

b(f ) = min
{

3
∑

ν=1

rν fνν : (r1, r2, r3) ∈ R ⊂ � 3
}

where R is a finite set. This is done by collecting all conditions f (x) = g(y) we
need during the process of refining � i to � i+1 up to i = 14. More precisely:
With ∆ 6⊃ T ∈ � i , k , x1 . . . xk , y1 . . . yk belonging to T (satisfying P2) and
x ∈ MIN

(

X \ {x1, . . . , xk}
)

let

Sx =
[

T ∩
(

K (X , x1 . . . xk , x)× V
)]

V×V

C (T ) =
⋂

x∈MIN(X\{ x1 , . . . , xk})
Sx 6⊂ ∆

{

(r1, r2, r3) ∈ � 3 :
3

∑

ν=1

rν fνν ≥ f (x) ∀ (f , g)∈Sx)
}

In the last definition we can replace (f , g) ∈ Sx by (f , g) ∈ E (Sx) (the set of
edges of the polyhedral cone Sx). D efine a series (Ci )i∈� 0

by C0 = � 3 and
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Ci = Ci−1 ∩
⋂

T∈ � i−1
T 6⊂∆

C (T )

For a set C ⊂
� 3 let

DC =
{

(f , g) ∈ V × V : A � 3
∗

(f , t) = A � 3
∗

(g, t) ∀t ≤ inf
r∈C

3
∑

ν=1

rν fνν
}

Clearly for
� 3 ⊃ C ⊃ C ′ we have DC ⊃ DC ′ ⊃ D . By an inductive argument

we see

Lemma 4.3 For all i ≤ j ∈ � 0 the following holds:
⋃

T∈ � i
T ⊃ DCj .

Again the sets Ci can be explicitly computed since they are determined by finite
sets of linear inequalities with rational coefficients. For i0 = 14 the set Ci0 is
bounded and its elements are convex combinations of a finite set of vertices
V (Ci0 ). This yields

Theorem 4.4 Let f , g be ternary positive definite forms with real coefficients and
let si = si (f ) be the successive minima of f . Let

b(f ) = min{−1/14 s1 + 18/7 s2 + s3 , 3/2 s1 − 5/6 s2 + 17/6 s3,

13/5 s1 + s2 + s3 , 7/2 s3}

and A(f , t) = A(g, t) ∀t ≤ b(f ).
Then f and g are integrally equivalent.

Remark. The first three terms in the definition of b(f ) come from the three vertices
of C14, the term 7/2 s3 is redundant (but the optimal bound only involving s3).

Now all computations can be redone introducing the condition det f = det g
i.e. we define � T = {T} iff T∩{(f , g) : det f = det g}∩(V × V ) ⊂ ∆ and in the

other case we replace (4) by � T =
⋃•

Txy∩{(f ,g) : det f =det g}/=∅ {Txy}. The conditions
involving the determinants were checked by a heuristic decision procedure that
works on all sets we are dealing with. Making the appropriate changes to the
definition of Ci and computing the coverings ( � i ) and V (Ci ) with the determinant
conditions we get:

Theorem 4.5 Let f , g, si be as in Theorem 4.4 with det f = det g. Let

b(f ) = min{ s1 − s2 + 3 s3 , 11/13 s1 − 6/13 s2 + 34/13 s3,

−s1 + 2 s2 + 2 s3 , 4/3 s1 + 1/3 s2 + 5/3 s3,

−2/3 s1 + 3 s2 + s3 , 14/9 s1 + s2 + s3 , 3 s3}

and A(f , t) = A(g, t) ∀t ≤ b(f ).
Then f and g are integrally equivalent.
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Remark about the computations
Determining the sets MIN(X ) we are always in the situation of Corollary 2.7.
We precompute the sets Wi ,a for a = 3 which turns out to be sufficient. The
vectors from these sets are ordered in a tree structure that reflects the relation
� and makes the computations of the involved MIN(X ) much faster. The actual
implementation that determines

⋃
T∈ � i

T uses a more elaborate partition of each
T ∩ D (with T ∈

�
i ) into disjoint sets (introducing additional strict inequali-

ties on the boundary of the subsets). It also takes advantage of the symmetry
induced by exchanging f and g in the pairs (f , g) ∈ V × V . F or a description of
the algorithms see [S ch2]. To determine

⋃
T∈ � 14

T we computed about 120 0 0 0
polyhedral cones of different dimensions (most of them of dimension 1 or 2).
The analogous computation with the additional condition on the determinants
involves about 30 0 0 0 polyhedral cones. B oth jobs needed 5-10 hours CP U time.
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