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1 Introduction

In this paper we are always dealing with quadratic forms with real coefficients but
it wouldn’t make any difference to consider only rational forms. The notion of
equivalence is that over 7, i.e. for n-dimensional forms we definef ~; g <—
ITeGL,(Z) : T(TX) = g(x). When we refer to the coefficients of a form f we
refer to its Gram matrix i.e. f(x) = 3=, fix? + 2, ; fjx . The n-dimensional
forms are embedded into R"(™D/2 py the coefficients f withi <.

Definition 1.1 The representation number Ax(f,t) of a real number t € R§ by
an n-dimensional positive definite form f with respect toa set X C Z" is

Ax(f,1)
Af, 1)

f{xeX: f(x)=t}
Agn(f,t)

It is well known that binary positive definite forms are determined up to
integral equivalence by their series of representation numbers (the theta series).
We know even more: Up to a factor and order there is only one pair of classes
of inequivalent positive definite binary forms with the same set of represented
numbers (without multiplicities). See [Wat] for a proof and reference to older
results. In higher dimensions there are counterexamples. E.Witt proved that there
are two classes of positive definite even unimodular forms of dimension 16
which have the same representation numbers [Wit]. Since then such examples
were found in dimensions 12, 8 and 4 ([Kng],[Kit],[Schl]). Conway and Sloane
[Con] found a 4—parameter family of pairs of quaternary forms with the theta
series of both forms being equal. Examples suggest that the forms of these pairs
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are inequivalent (at least if some inequalities for the parameters hold), but this
is not known in general.

In her thesis [Suw] Suwa-Bier shows that there are at most 4 pairwise in-
equivalent positive definite ternary forms belonging to a given theta series. The
proof is divided into many distinct cases in some way similar to the calculations
presented here. She gives aso a short proof for “at most 30”.

Our aim is to find a bound b(f) with

Aff,t) =A(g,t) Vi <b(f) = f ~y3yg 1)

where f, g are ternary positive definite forms. For such forms there is a well
known fundamental domain, the Seeber-Eisenstein reduced forms, containing
exactly one representative of each class (see [Eig] or [O'M] p.142f). The set of
Eisenstein reduced forms in R® is the union of two convex cones. We choose
other representatives by a piecewise linear map that doesn’t change the classes
and defines a bijection to one convex cone in R® which we denote by V. In Def-
inition 2.1 we give the linear conditions which define this fundamental domain
V. By restricting ourselves to reduced forms we can replace the notion of inte-
gral equivalence by equality. To exploit the condition A(f ,t) = A(g, t)V teIR§ on
(f,g) € V x V wedivide V into domains of forms with finitely many prescribed
successively minimal vectors. It is sufficient to consider only representation num-
bers with respect to Z2 (by which we denote the set of primitive vectors in 73
with the last nonzero coefficient being positive). Let x4, ..., € Z3 be the first
j successively minimal vectors of f, i.e. f(x;) = minf (Z3\ {xi,...,xi_1}),
and yq,...,Y; those of g. The equality of the representation numbers leads to
f(x) = g(y;). These are linear equations with integral coefficientsin the variables
i, gij -

In Sect. 2 we describe the subdivision of V into domains with finitely many
prescribed successively minimal vectors. The main problem is to describe the
refinement of such a subdivision to one with one more prescribed minimal vector
in each member. In any case we give afinite set of vectors sufficient to be taken
into account as the next minimal ones.

Definition 1.2

A
D

{F. 1) eV xV}
{F.9) eV xV 1 Af,t) = AQg, )V teRE)

where V denotes the closure of V C IRS.

In Sect. 3 we define a decreasing series (i) of coverings of D that can be
explicitly computed, each refining its predecessor. The member sets of these
coverings contain pairs of forms with prescribed minimal vectors and the re-
finement is done, roughly said, by choosing the next minimal vectors. These
coverings approximate D in the sense that D = (), Ureg, TN (V x V). By ex-
plicitly computing them with a computer it turns out that after finitely many
steps each member set is contained in the diagonal A. To achieve this, we
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must take care of the following situation: There are pairs of forms with any
given number of the first successively minimal vectors lying in (e, &), (the
2-dimensional sublattice spanned by the unit vectors e; and &,). Involving only
minimal vectors from this sublattice the equality of the theta series only im-
plies fiie; ), = Yj(erer), ater alimited number of steps, but not f = g. Thus
any T € Ti with fiee), = g(ere), V(F,9) €T is refined by considering
successively minimal vectors only from 72 \ (e, &),. We ill get equations
from the minimal vectors because (f,g) € D and fje, o)), = 9j(er,e0), iMPlies
Az \ (er,0), (F 1) = Aga (e e, (9, 1). The sublattice (ey, &), is treated the same
way.

An explicit bound b(f) for which (1) holds is given in Theorem 4.4 and 4.5.
In the case of formswith integral coefficients the theory of modular forms gives a
bound for the number of coefficients of a theta series which determine that series
among all theta series belonging to forms with the same level. Theorem 4.4 aso
gives a bound for the coefficients that determine the theta series of an arbitrary
positive definite ternary form with real coefficients among all other theta series
belonging to ternary forms (possibly with other determinant), thus including the
case of theta series that are not modular forms.

With the constructive subdivision of V into domains of forms with prescribed
successively minimal vectors we can also answer the question, which ternary
positive definite forms have given representation numbers in an interva [0, t].

2 Successively minimal vectors

First we state how to identify the class of aform from its Gram matrix. We recall
that a positive definite quadratic form f in n variables is Minkowski reduced iff

vk=1...nVxeZ"(ged(Xy, ..., %) =1 = f(x) > fig ) 2

For forms of dimension n < 4 we can replacein (2) V¥ x€Z" by Vxe{-1,0,1}"
(see [Min]p.78). We obtain the following reduction conditions from Eisenstein’s
by a piecewise linear map that folds up the two convex cones of the Eisenstein
reduced forms to one convex cone which is computationally easier to handle. This
map is bijective and does not affect the classes. Thus in every class of ternary
positive definite forms there is exactly one representative satisfying Definition
2.1 as well as exactly one Eisenstein reduced form. For the original Eisenstein
conditions see [Eig], [O'M] p.142f or [Sch2] where the piecewise linear map and
a reduction procedure is described.

Definition 2.1 We say that a positive definite ternary form f is reduced iff the
following conditions are satisfied.

1. f is Minkowski reduced
2. fp>0,fi3>0and (fo=0Vvfz=0) = f3>0
3. fi1 =fn = |fn| <fi3

fop =33 = f13<fp
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4, f]_l + f22 — 2f12 — 2f13 + 2f23 =0 = f]_l — 2f13 — f12 <0
215 =111 = f13 < 263
213 =11 = f1p < 263
263 =1 = f1p < 2613
2f23 > —f22

The set of reduced forms is denoted by V.

The closure of V C IR is a convex cone spanned by the 11 forms from the
sets M1 and My, i.e. V = {3 Aifi @ fi e Mp UMy, A € Ri}, where

000y, /0 0 O
000),[0 2 +1
001/ \0 +1 2
0 o 2 0 1 2 1 0 211\ /211
< 2 :tl),(o 2 :I:l),(l 2 :|:1>,<120>,<121>
+1 2 1 41 2 0 +1 2 10 2 112

Lemma 2.2 Letf € My, X = (X, X2, X3) € Z3. Then f(x) > ||x||%.,
where [x||,, = max{|xal, [Xz|, [a]}-

Proof. Sincef € M, we havefj =2 and f; € {—1,0,1} fori #j. Let {i,j,k} =
{1,2,3} such that |x| = max{|xi|, %], [Xa|}. Then [xix| = min, ., {|x,X.|}.
Now for f € M, either one of fi,, fi3,f23 is 0 or (fio, f13,f23) = (1,1,1). In both
cases at most two of the terms f1ox1X%o, f13X1X3, f23XX3 can be negative and their
sum has the lower bound —|x; Xi| — | % |. Now

f(x) = wax3+22fl,ux,,x“ > 22x372|xixk|—2|xixj|

v<p v

My

M2

oOoN

= 201/2 %] — )2+ 22/2 %] - 52+ > (xR

Definition 2.3 Let x,y € Z3, X,Y C Z3. Let

X<y (resp.y>=x) &= VfeV :f(x)<f(y)
XZY = {xeX : VyeY : x#y}
MIN(X) = {xe X : VyeX: (y=x = y=x)}

MIN(X) is the set of minima elements of X related to the order relation <.
Every sequence x; = Xz = ... is eventualy constant. Thus every nonempty
set has minimal elements. For every X C Z2 the set MIN(X) is finite and can
be determined effectively (this is true for the analogous definition for arbitrary
dimensions with the notion of Minkowski reduction as well). For special X C 73
we make this explicit giving an a priori bound for MIN(X).

Lemma24 1. Leta € Z, x = (X1, X2, Xa) € Z2 with (X, X3) # (0, 0). Then
X #(@,1,0) = |x||. < /2(a2+max(a,0) + 1).

2. Let x € Z3 with x3 # 0. Then
X% (@,0,1) = ||, < v/2a2+max(a,0)+1).
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3. Let x € 73 with x, # 0 and x3 # 0. Then
X # (a,59n0exs), 1) = [X||,, < /2(a?+ |a| +max(a,0) +3)
(where sgn designates the sign function).
Proof. The conditions on x imply f(x) > f(Xo) VT € M1, where xo = (a, 1, 0),

(a,0,1), (a,sgn(xzxs), 1) in the cases 1,2,3 of the lemma respectively. For al x
satisfying the assumptions we have

X ¥ Xg = JfeVv : f(x) < f(xo)
— JfeMpuM;: f(X) <f(xp)
— IfeM, : f(x) < f(Xo)

Now the assumption follows from Lemma 2.2 and estimating f (xo) for f € M..
O

Definition 2.5 For a € Z let
{xeZ¥\ {0} : ged(x)=1and (Vi >k : x =0) = x >0}
Wi = (27 U {(a, 1,0}

(Z3\ (v, 2)5) " ™ U {(@.0.1))

, (Z3\ ((er, &)y U (e, &9),)) * (@@

Because of the symmetry f(x) = f(—x) and f(kx) = k2 (x) we can restrict
ourselves to representation numbers with respect to Z3. The numbers Ays(f, 1)
for t < to determine the numbers Ay (f, t) for t < to and vice versa. Lemma 2.4
implies

N
w
I

S
] 1

U {(a,-1,1),(a,1,1)}

W c {xez®: x|, <2(a®+max(a,0+1)} fori=1,2
Woa C {xe7Z2: x| <2(a%+]|a|]+max(a,0)+3)}
Lemma26 Let#Y c X c Z2 and W D XZYUY.
Then MIN(X) = MIN(X N'W).
The Lemma is a consequence of < being an order relation.
Corollary 2.7 For X c 72 the following holds:

1 (@,1,0) € X = MIN(X) = MIN(X N Wy2).
2. X CZ3\ (e, &), and (a,0,1) € X = MIN(X) = MIN(X N'Wx,).
3. X CZ\ ((er,€), U (er,&),) and {(a, ~1,1),(a,1,1)} C X

= MIN(X) = MIN(X N'Ws_,).

Definition 2.8 Let X C 73, and xg,...,xx € X pairwise different. We define
K (X, Xz ...Xk) tobetheset of formsin V with (not necessarily linear independent)
successively minimal vectors Xy, ..., Xx € X, i.e.

KX, x1...x) ={f eV : f(x)=minf (X\ {Xs,...,xi—1}) Vi=1...k}
Fork=0let K(X)=V.
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It is easy to see that

KX, X1...xx)={f eV : f(xq) <...<f(x) and
fo) <) VXEMIN(X\ {X1,...,x})} )

We will always consider K (X, X1 ... xx) where X isone of Z3, 73\ (e, &), or
72\ ((er, &), U (e1,e3),). By Corollary 2.7 we know MIN (X \ {Xy,...,X}) =
MIN((X\{X1, ..., X})NW ) for appropriatea € Z. Since MIN(X\{xy, ..., X})
isfiniteand V isdefined by finitely many linear inequalitiesthe set K (X, X3 . . . Xk)
is the intersection of finitely many open or closed halfspaces.
Lemma 2.9 Let X, X1,...,X¢ be asin Definition 2.8 and X \ {Xg,...,xk} # 0.
Then

K (X, X1...%) = U K (X, X1 ... %k, Y)

YEMIN(X\{x1,...,X})

Proof. Let f € K(X,X1...Xx) and

Ye = {x € X\ {X1,..., %} 1 fx)=minf (X\ {X1,...,x})}

Then @ # MIN(Y;) € MIN(X\ {X4, ...,Xk}). Now for any y € MIN(Y;) we have
f € K(X,X1...Xk,Y). The other inclusion is trivial. O

3 Coverings of D by polyhedral cones

Consider the n-dimensional Euclidean space with scalar product * - .

Definition 3.1 Let T C R". We say that T isarational polyhedral cone iff there
are finite sets A, B € Q" such that

T=T(AB)=({XxeR": x-a>0}n[|{xeR": x-b>0}
acA beB

The dimension of T is the smallest dimension of a linear subspace containing T.

Given A, B and arational subspace U C R" there are well known algorithms to
decide whether T(A,B) C U. In fact, we always compute the edges of T, i.e. a
minimal finite set E(T) = {xiRg, ..., xR} with T =371 xRS,

From now on we consider polyhedral cones T C IR® x RR® of pairs of almost
reduced forms, i.e. T € V xV C R*¥. The intersection T N (V x V) is in
genera not a polyhedral cone, because the conditions (on both forms) f € V
imply finitely many conditions (U, b,) of the kindf € U, = f -b, > O for
some subspaces U, ¢ R® and b, € R® with indices, say v € J, given by the
reduction conditions.

Lemma 3.2 Given T = T*(A,B) ¢ V x V we find a polyhedral cone Ty xv
with

TNV xV) C Tyxwyw C T and TNNV xV)=Tyxv
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Proof. We construct the set Ty «v by taking into account only those reduction
conditions that affect the closure. Let Iy(T) = {vr€J : T CU, xR®} and
I(T)={red : TCR®*xU,}. Let

oM =Tn({(F.9) : f-b,>0n(){(f.9): g-b, >0}
veh vEl;
Clearly T D ¢(T) D TN (V x V). Consider the sequence To = T, Tij+1 = ¢(T;).
This sequence becomes stable since dim¢(T) = dimT = ¢(¢(T)) = ¢(T).
The limit has the properties claimed for Ty xv . O

Now we define a sequence of finite coverings €; of D with polyhedral cones
where ;.1 is finer than §; and

N UTnvxv)=D

iENo TET;

Let To = {(V x V)vxv }. Let T beany covering of D such that for each T €
thereisak = k(T) € Np with

Pl: T isapolyhedral coneand T = Ty v .

P2: Let A = A(T) beoneof (), (e, &),, (€1, e),U (e, e3), and let A be maximal
withfla=gaV(f,g9)eT. Let X =73\ A. Thereare x1... Xc,y1...Yk € X
(belonging to T) with

T C K, X1...X) x KX, y1-..Yk)
T c {(f,9eVxV:fx)=gy,)vw=1...kT}
Then arefinement 3’ of ¥ may be constructed as follows:

Let T € T with k,; A, Xg...Xk,Y1-..Yk & in P2. We define a covering Mt of
TND by:

—IfTcCAleeMr ={T} (with the same k)
—If T ¢ A: For x € MIN(X \ {X1,...,%}), ¥y € MIN(X\ {y1,...,Y«}) let

Sy
Tyy

[T AKX X1 xi0%) X KXy e W)y Ly
[Sy N {(f, ) €V xV 1 £ =gW}]y .y

Let Ay = A(Tyy) € {0,(e1,&),,(€1,€), U (e, e3),} be maxima with
f\/lxy = gl/lxy A (f,g)GTXy. Let Xxy = ZE \ Axy.
— If Ay = Alet k(Tyy) =k(T) + 1.
— If Ay # Az Let Xgs1 = X, Yis1 =Y. Let 0 <1 < k+1 be maxima with
f({X1, - X P\ Axy) =8 ({Y2, -, ¥} \ Axy) =g and let k(Tyy) = g.
Define

Mt = U {Tw} )
XEMIN(X\ {X1,-...%})
YEMIN(X\{y1,.... Yk })
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where U denotes the disoint union. All Ty, € My have properties P1 and
P2 (with the number k(T,y) we defined) and we have

To U {Sy} D TNV xV)
XEMIN(X\{X1,... Xc})
YEMIN(X\{y1,....yk})

Let (f,g) € SyND. Since 4, = gj4 we have Ax(f,t) = Ax(g,t)V teRg and

f) =minf (X \ {X1,...,%}) min{toeRS : Z Ax(f,t) > k+l}

0<t<to
= g(y)
Thus
To U {Ty} D TND
XEMIN(X\{x1,....x})
YEMIN(X\{y1,-.-.yk})
Finally let
v = o (5)

TeT

By construction ¥’ is a refinement of ¥ that covers D and each T € %’ has
properties P1 and P2 with the number k(T) we defined above.

Definition 3.3 Let (%) bethe series starting with To = {(V x V)y xv } asabove
and % =% Vi>0.

The sets Ty, and T)(,y/ coming from different T or different pairs (x,y) may have
the same elements but the construction may lead to different numbers k(T,y) and
K(Tyy/). For notational convenience (to obtain a function k(T)) we defined My
and ¥’ (in (4),(5)) to be the disoint union of the belonging Tyy, thus identifying
the members T € %; not only by their elements but also by the way they are
constructed.

Definition 3.4 Givenf € V, k € N>0 |et

1/)(f,k)=max{t eFZHUL0} 1 Y Au(f,9) < k}

s<t

This is well defined since f is positive definite and for each f € V we have
(k) "o,

Lemma35 Leti >3, AT e%, (f,g) e TN(V x V). Then
Ags (f,1) = Aga(g,t) vt < (f,[i/3])

where [X] denotes the biggest integer < x.
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Proof. LetTo D ... D Ti_1 D T; =T bethesetsT; € T aboveT. Let k =Kk(T;),
Aj = A(T;) asin P2. The sequence (4;) increases and has at most 3 values. Thus
thereisasection A, =...= A, of length p —v+1> (i +1)/3. Since T; ¢ A
and Aj = Ajs; implies kjz1 =k +1 we have k, = p— v +k, > [i/3]. Let
X1 Xg,,Y1---Yk, € 73 \ 4,, such that P2 holds. For all t < f(Xx,) holds

Ags(F,0) = Ax,nze(F 1) +Agava, (F)1)
= " +H{1<) <k, : f(x) =t}
AA#ﬁZi (gvt) +AZ§‘\A#(gat) = AZi (gvt)

Now the assertion follows from  « (f, [i /3]) < o(f,k,) < f(x,). 0

Corollary 3.6 Mieno Urer, TN(V x V) =D.

4 Results

By explicitly computing the sequence (%) we get the following

Theorem 4.1 The sequence (%;) becomes stable and for i > 14 we have
TCAVTEeS. ThusD C A.

We can extract from the computation a bound b(f) such that for all f,g € V
holds Ags (f,t) = Ags(g,t) Vt <Db(f) = f =g.

Definition 4.2 For a positive definite n-dimensional quadratic form f let
s()=min{f(x) : 3xq,...,x € Z3 lin. independent with f (x,) < f(x)}
be the successive minima of f.

For a Minkowski reduced form f of dimension < 4 we have s(f) = fij (see
e.g.[Wae]). We shall find an optimal linear bound in the diagonal coefficients of
the kind

3
b() =min{ 3 r.f. © (r.r2r9) R Q%)
v=1

where R is a finite set. This is done by collecting all conditions f (x) = g(y) we
need during the process of refining ¥; to T+ up to i = 14. More precisely:
With A 2 T € %, K,X1...Xk,Y1...Yk belonging to T (satisfying P2) and
X € MIN (X \ {Xq,...,xc}) let

S

[T A (KGR X, %) % V)],

3
c(m N {turered®: Yok, 2100 v 9es))
v=1

XEMIN(X\{x1,....x})
SzA

In the last definition we can replace (f,g) € S by (f,g9) € E(S) (the set of
edges of the polyhedral cone S;). Define a series (Ci); ey, by Co = QS and
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G=C.n (] cm
TeTi-1
TZA

For aset C C Q° let
3
De = {(f,0) €V XV : Ay (f,1) = A(g,1) Wt < rngZ;rny}

Clearly for Q® > C > C’ we have D¢ D D¢/ D D. By an inductive argument
we see

Lemma 4.3 For all i < € Ny the following holds: Ures, T 2 Dg-

Again the sets C; can be explicitly computed since they are determined by finite
sets of linear inequalities with rational coefficients. For ip = 14 the set G, is
bounded and its elements are convex combinations of a finite set of vertices
V(Ci,). Thisyields

Theorem 4.4 Letf, g beternary positive definite forms with real coefficients and
let 5 = s (f) be the successive minima of . Let

b(f) =min{-1/145, +18/7s,+s , 3/25 —5/6%+17/6ss,
13/5s1+5,+55 , 7/2s}

and A(f,t) =A(g,t) Vt < b(f).
Then f and ¢ are integrally equivalent.

Remark. Thefirst three termsin the definition of b(f ) come from the three vertices
of Cy4, the term 7/2s; is redundant (but the optima bound only involving ss).

Now all computations can be redone introducing the condition detf = detg
i.e.wedefineMir = {T}iff TN{(f,g) : detf =detg}nN(V x V) C Aandinthe
other case we replace (4) by My = L'JTXym {(f.9): detf=det g}#0 1 Txy}- The conditions
involving the determinants were checked by a heuristic decision procedure that
works on al sets we are dealing with. Making the appropriate changes to the
definition of C; and computing the coverings (%) and V (C;) with the determinant
conditions we get:

Theorem 4.5 Letf, g, 5 beasin Theorem 4.4 with detf = detg. Let
b(f)=min{ s -—s+3s3 , 11/13s; —6/13s, +34/13s;3,

—$+29+25 , 4/351+1/3%+5/3sg,
—2/351+35+s , 14/9s1+5+s , 3sg}

and A(f,t) = A(g,t) Vt <b(f).
Then f and g are integrally equivalent.
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Remark about the computations

Determining the sets MIN(X) we are always in the situation of Corollary 2.7.
We precompute the sets W, 5 for a = 3 which turns out to be sufficient. The
vectors from these sets are ordered in a tree structure that reflects the relation
=< and makes the computations of the involved MIN(X) much faster. The actual
implementation that determines (., T uses a more elaborate partition of each
TND (with T € %) into digoint sets (introducing additional strict inequali-
ties on the boundary of the subsets). It also takes advantage of the symmetry
induced by exchanging f and g in the pairs (f,g) € V x V. For a description of
the algorithms see [Sch2]. To determine (J;c,, T We computed about 120000
polyhedral cones of different dimensions (most of them of dimension 1 or 2).
The analogous computation with the additional condition on the determinants
involves about 30000 polyhedral cones. Both jobs needed 5-10 hours CPU time.
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