THE THIRTY-NINE SYSTEMS OF QUATERNIONS WITH A POSITIVE
NORM-FORM AND SATISFACTORY FACTORABILITY

By CHrIsTINE S. Wiruiams AND G. PaLL

1. Introduction. The quaternion arithmetics which we shall set forth are of
particular interest because for them, and only for them, among systems of
rational generalized quaternions with positive definite norm-forms, is factoriza-
tion always possible and unique, under conditions rather like those for integral
Hamiltonian quaternions [5]. It may be surmised therefore that these systems
will be susceptible of many applications, and it is our purpose here to tabulate
the facts about the individual 39 systems in order to facilitate their use. The
systems themselves, and the proof of their unique properties in §5, were derived
by Pall [5]).

2. Definitions and notations. Quaternions (generalized) [4; §3] are quantities
of the form t = &, + 4:t, + %.t» + 4¢3 where the eoordinates {; range over some
field, say that of reals, and the basal elements 1, 7, , %, , 7; satisfy a multiplication
table associated as follows with a given symmetric ternary matrix (a.s) and the
adjoint matrix (4 ,4):

3
2= —Aeale=1,23);  taig= —Au+ 2 ayils ,
. dm1
iﬁ":n = —Aﬁu - 2 avﬁiﬁ )
1]

a, 8, v being a eyclic permutation of 1, 2, 3. The fundamental number of the
system is d = 4] a,s | and is assumed not zero. The case (@.5) = I, the identity
matrix, gives the Hamiltonian quaternions.

A suitable basis for integral elements [5; §3] is given, in case the a.. and
2a,, are rational integers, by the quantities 1, j; , j» , ja , Where

Je = ta + %¢a (@ =1,2,3);

and ¢, = 0 if 20, is even, ¢, = 1 if 2a,, is odd. Thus ¢ = & + Z Taba =
8+ D jale (Whenee g =, — 3 ) €,t,) is integral if and only if ¢, , ¢, , &, and
to — % D €al, are integers. ' '

It is assumed in this article that the form f = ) a,s%.%s has integral co-
efficients a.. and 2a.s , and is positive definite; § denotes the adjoint form, of
matrix (4 .s), whose elements are in general not integers. However, the quater-
nary form F(& , 6, , 6, , &) = (8 + % 2 eata)’ + 2, Aagtals has integral co-
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efficients. The last form gives the norm of #; that is, if the conjugate ¢ of ¢ is
defined by t, — > t.t, ,then tt = tt = F(t} ,t,,t,, t;). It can be shown that
the system of integral quaternions associated with (a,.s) is maximal [5; §3] if
and only if the form F cannot be derived by an integral, linear transformation
from the adjoint of an integral form of smaller determinant than f; and that
this holds if and only if d is a squarefree integer and ¢, is —1 for each prime in
d. Ouly five of the 39 systems are maximal [5; Theorem 10].

3. An example out of Table I. A system with d = 4 | a.s | is denoted by
F; , and several systems of equal determinant are distinguished by writing
F;, F;, FY, ete. Table I gives for all 39 systems the ternary form f, the asso-
ciated adjoint form, and the ¢, . This makes it easy to construct the multiplica-
tion table for any system, and to express the condition on the i-coordinates that
a quaternion be integral.

For instance, if we consider F}j :

1 3 ¥ 15/4 -~} —1
(@) =32 2 3] (dop) =|—-1 74  -i
P i 2 -3 -1 7/4

The multiplication table is 17 = —15/4, 43 = 13 = —7/4,
$+ 40, 4 40, + 245, Tty = 3 — ) — 34, — 24y,
'iai1=%+%1:1+2’£2+%‘i3, igis =%+i1+%ig+%i3,etc.

Sinceél = €; = € = 1, t = to +Ziata = (to d %Eta) + Ejata . Accord'
ingly, ¢ is integral if ¢, , &, , & and &, — 3¢, — 3t» — #t; are integers. The norm
of tis s + Y Austats , OF

(t + 3t + 3t + 36 + (158 + 784 + 76 — 64d, — 6Lty — 2iuty)
=t + tht, + Bty + 8ty + 46 + 26 + 26 — b — bt

Since the minimum. of 3, A ggt,lsis 7/4, thenorm of tis 1 only if £, = &, = ¢, = 0,
t;, = +1; hence =1 are the only units.

'I:l'iz

t))

4, Equivalent systems with simpler multiplication tables. To obtain a simpler
multiplication table we can apply a rational transformation replacing (a.s) by
a diagonal matrix. In Table I the values of the ¢, (the rational invariants of
Hasse) [2] or [3; §4] are given for each form and enable us to determine to which
diagonal forms & is rationally equivalent. The system of integral quaternions
in the original system transforms into a system of quaternions in the new system
(also closed under addition and multiplication, etc.) and the conditions of
integrality transform into certain conditions on the coefficients in the new
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system. Table II lists for each of the 39 systems an arithmetically equivalent
gystem with a diagonal multiplication table. The integrality conditions. and
the units are stated for these diagonal systems. There are, to be sure, infinitely
many such equivalent systems, but we have tried to choose those with reasonably
gimple integrality conditions.

To illustrate the derivation of such a diagonal system, we again consider
Fif:e,(F) = ¢,(f) = (—8, —7), = —lonlyforp = 3, ». Hence 7 is rationally
equivalent to 3z} + 323 + 23 , since (—3, —1), = —lonly forp = 3 and .
Indeed, by (1) of §3,

F=(@+3+3+3)"+3C -6 +3t—t— )"+ 12+ )"

Hence if we set
vo=2+t+t+4t, % =2 —t,
Yo = —b+ b — 1, Ya =2+ 4,
then the norm-form becomes (33.)° + 3(3y:)" + 3(3%2)" + (3ys)°, and the

system of quaternions y = }(yo + %y + %¥: + 4:¥s), with the multiplication
table

W I
1:1 - 3 3’1:3 - iz
'iz - 37:3 - 3 7:1

s 2 —t -1

given by f = 2} + 2; + 323, is rationally equivalent to Fij .

Furthermore, in the original system £ is integral if & , ¢, , & , ¢; are integers.
So in the new system, y is integral if y,, 1 , ¥2 , ¥ are integers such that y, = y,,
mod 2, and y; + 2y + 3y; = 0, mod 8.

If we use the identities

= 3(tl + tz e t:i)z + 3(t1 + ta)z + (3t1 - 2tz - t3)2
=3(t — t — 4" + 320" + b — 2)%,

we get two other equivalent systems with the same multiplication table, with
quaternions of the form 3(y, -+ 4191 + %Y= + %¥s), and the respective integrality
conditions (i) the y, integral, ¥, = ¥, , mod 2, 2y, + 3y, — ¥, = 0, mod §,
(ii) the y; integral, y, and y; even, ¥, = ¥y, , mod 2, and y. + y; = 2y, , mod 4.
All three systems thus found are arithmetically equivalent fo Fj; .
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5. Statement of theorems on factorability of integral quaternions. If z = ut
in integral quaternions, ¢ is called a right-divisor of z. Integral quaternions of
norm 1 (units) will be designated by the letter 8. The left-associates 8¢ of ¢ are,
with ¢, right-divisors of 2. A necessary condition is that Nt shall divide Nz.
(Here Nt denotes the norm # of ). We call z primitive if its j~coordinates are
relatively prime. The following theorems refer to any system associated with
an integral ternary f of non-zero determinant 4d.

TeeorEM 1. (Unigqueness of factorability for all primitive quaternions). Let
x be primitive. If Nt = m, and t is a right-divisor of z, the only right-divisors of
z of norm m are the quaternions 61, provided

(1)  m has no prime factor p such that p°* | d or such that p || d and ¢, = 1.

TaeoreM 2. (Existence of factors when the generally necessary conditions are
satisfied.) Let m be a non~zero integer satisfying (1) and represented by F. Let
z be primitive and m | Nz. Then if F is in a genus of one class, = has a unique
set 0t of right-divisors of norm m.

TaeoreM 3. If F is not in a genus of one class, then there exist infinitely many
primes p represented by F, and for each p primitive quaternions x of norms divisible
by p bul having no righl-divisors of norm p.

It should be noted that restriction (1) is vacuous [5; §3] in the maximal cases,
and is otherwise a mild and generally necessary restriction. The 39 systems
listed in Table I are precisely the cases of positive definite norm-forms in genera
of one class.

We do not wish in this article to enter into many applications. However, we
will prove as a consequence of Theorems 1 and 2 the existence of a greatest
common right-divisor.

6. Existence of greatest common right-divisor.

TaeoreM 4. Let z be a primitive integral quaternion, y an inlegral quaternion.
If F is in a genus of one class, and the prime factors p of Nz are represented by F
and do not satisfy p° | d or p|d and ¢, = 1, then there exists a greatest common
right-divisor of x and y.

Proof. We can evidently begin by writing
(1) z = ul, y = ul,

where 4 and » have no common right-divisors, (except units). We will now
prove that ¢ is a g.cr.d. of z and y. If

(2) x = u't, y = v't,
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we must prove that ¢’ is a right-divisor of &. Let m = Nt,m’ = Nt'. The desired
result is obvious from the uniqueness of the right-divisor of norm 7’ of the primi-
tive z, in case m’ |m. Assume if possible the contrary, and write m = dm”,
m’ = d'm”, where (d, d’) = 1. Then as the right-divisors of z with norm m'’
are unique, we can set

3 t=a", t=4at, Na=d, Nd=4d, N'"=m".
Hence by (1) and (2), ua = v'a’, va = v'a’, whence
@ Na-u = v'd'd, Na-» = va'a.

Hence the right-divisor of norm d’ of the primitive quaternion ¢’ is a common
right-divisor of Na » and Na v, hence since Na is prime to d’, a common right-
divisor of u and v. It follows thatd’ = 1 and m’ | m. (To see that a’a is primi-
tive, note that a’d is primitive, mod d’, and d’d is primitive, mod d.)

7. Genealogies of the 39 systems. It is shown in reference [5] that only five
of the thirty-nine systems are fundamental (corresponding to maximal arith-
metics), namely F, , F; , F5, F, , and F,; . Indeed, all the systems (21 in num-
ber) with ¢, = —1 can be obtained from F, by an integral transformation, and
gimilarly those with ¢; = —1 may be obtained from F; by an integral trans-
formation, etc. However, there are further connections between the forms thus
obtained. For instance, there is an integral transformation of determinant 2
that takes F, into Fy , but no such transformation taking F, into F{ ; it is neces-
sary to apply a transformation of determinant 2° on F, to get F5 . It can be
shown that it is never necessary to use a transformation of higher determinant
than p® to derive one form from another [5; §12]. The genealogy, which appears
below, shows completely the relations between the different forms. An arrow
connecting one form to another means that the second may be derived from
the first by an integral transformation.

To show how this genealogy was constructed we take a few examples. In
certain cases it is easy to find a transformation which will take one form into
another. Consider F, , F .

Fo=2a2+ 22+ 22 + 22,
Fs=yi+ 2 +2n+vi=vm+ @—w)' + @+v) +v-

Therefore, the transformation: 2, = yo, 21 = th — Yo, T2 = Y1 + Y2, Tz = ¥s
takes F, into F; . The equivalent diagonal systems criteria are useful in some
cases. Let us take ¥, and F,, . In the diagonal equivalent of F, , an integral
quaternion is of the form 3(y, + %y: + %:¥. + 3%:ys), where the y,; are integers,
and 9o = ¥z, ¥1 = ¥:, mod 2. In the diagonal equivalent of F,, an integral
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quaternion is of the form 3(ys + %4y + %:y2 + 373y,), where the y; are integers
and y, = —y,, mod 3, and yo = ¥, 1, = ¥, mod 2. Therefore, the integral
quaternions of F,; are just a subset of those belonging to F, , and so F,; may
be derived from Fy by an integral transformation.

We will now show a. couple of ways of proving that one form cannot be derived
from another by an integral transformation. In some cases it is only necessary
to consider the numbers represented by each form. F} does not represent any
number of the form 4n 4 2, whereas F{, does represent such numbers; therefore,
there is no integral transformation taking F} into F{; . Next consider F{} , F}, .

/4 has the form-residue [5; §13} 5 + 323 + 8(2} + 2,2, + 23), mod 27; Fj; has
the form-residue (1, —3, —8, 24), mod 2", If there is a transformation 7' taking
'} into F}, we may assume [5; §12]:

where0 <\, pu < 2,0L5v<2,p+ 0+ 7=1,p,0,7 > 0. Therefore, the
only possibilities are:

1) z, » 2z,, To—> Ty, Ty — X3 .

Wz —>20 42, 229, Tz—s.

2) z, > 2z, + 3, T, >z, Tz — Ty .

@)z, > 2+ 2.+ x5, T2 T, , Ty —> T3 -
“) z,— 2, Z, —> 2z, , Ty —> Ty .

5) z, >z, , z, — 22, + 25, T3 —> Xy .

6) 2, — z,, Lo — Tz, Ta — 225 .

(1), (4), (6) obviously do not take F{; into a form Fj; , mod 2", (2) takes
17 into z; + 37z; + 8(4x? + 3 + 47,25 + 22,22 + 2275 + 73). This represents

11, and is therefore not (1, —3, —8, 24), mod 2’. For the same reason (3) does
not work. (5) takes F{} into x5 + 8x3 + 8(xf + 22,2, + 7175 + 425 + 42,75 + 23)
which is not (1, —3, —8, 24), mod 2". Therefore, there is no integral transforma-
tion that takes F!} into F}, .

It should perhaps be pointed out that Table II gives examples of interesting
factorization systems. For example, consider Fe,. It is well known that the
system (corresponding to F,) of ordinary quaternions y = y, -+ 4.y: + %9 +
13Ys Where the y; are integers, are not only closed under addition and multiplica-
tion, but also completely factorable in the sense that if Ny = mn, where m is
odd, then y can be factored within the system as 2w, with Nz = m and Nw = n.
But the example Fg, shows that the same property holds true of the subsystem
in which the coordinates y; are even and have a sum divisible by 4.
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GENEALOGIES OF THE 39 FORMS

G- Cs= =~}

1 I

Y1 F“
.[. l | c,,.f-.

S

Notations used in the tables. (a, b, ¢, r, s, ) denotes the ternary form of matrix

a i 8
¢ b r
s T c

3 means “such that”. In the first column of Table II (a, b, ¢) denotes (a, b, c,
0, 0, 0); in the second column of Table II (a, b, ¢, d) denotes ay, + by, +
cYstz + dyats .

Table I
Units Allpasp®|d
(in j-coordinates) orplid, ¢ =1
F,: f= (1) 1, 11%,%’%) +1, :bja,:t(l—ja))
¥F = '}(31 3,3, —1, _11 —1) +(1 —J. —j3))
:*:(1 - jl - ja)y
Cz='—1. € = € = € = :!:(1"‘]1""]2),

£(1 = Ji — J2 — J3),
(2 — j1 — J2 — Ja)-
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Table I-—Continued.

Units
(in j-coordinates)

Allpap’|d
orplid, e =1

F,:

F,:

Fy:

Fg:

F,:

Fs:

Cy
J
F
Cs
f
F
C;
:f=14(1,14,200,—3)
F
Cy
f
F
Cr
f
F

a=1,6=¢6=>0

=& = =10
1

= %(77 7,3, -1, -1, —3)
€ = € = € = 1
= (1) 1,2, “%: _%} 0)
=1(7,7,4221)

=—1 g=6=1,6=0

= (2) 2; %) 07 07 1)

=1 g=€=0 =1
= (1: 17 2: _%1 0, O)

= (7/4,2,1,%0,0)

=—1. g=1,6&=¢6=0
=(1,1,2,0,0,0)
2,210,0,0)

= —1 € =¢=¢=0
Fy: f= (1’1737%’%)%)

§ = }(11, 11,3, —1, —1, —5)

= —1 =€ =¢¢=1
Fy: fz(]-’ 1,3,0,0, —3)

’ .
12 -

F
Cs
f
F
Cs
f
F =(11/4) 11/47 ly %1 %; i’)
Cy
/
¥
C3
f
3

=@3,8%003%)
== g =€=0¢=1
=(,221%%
= (3: 7/4, 7/4) "'%) —%: —'%)
—'1. €1=0,62=€3=1

=(1, 1,3, —%) ""%’ 0)

=—1. €1=€2=1,€3=0
= (1: 1,300, 0)
= (3; 37 1,00, O)

I
|
—
R

]
2
0

I
m
©

f
(=)

C; =

:*:1) :':jl ’ :hj3 ’ ﬂ:jz ’

:|:(js - j2)7 :l'—'(l - jl)-

:t]-; :!:jl I :!:jz b :tjs .

£1, =(1 — 7s), £s .

+1, £5; .

*1, %55, =1 — 7a).

+1, &7, .

+1, 75 .

:tl: ij:* ? ﬂ:(l - js)-

+1, 75, =1 — 73).

1.

+1, &5, .

+1, =75 .

1, 75, =1 — Ja).
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Table I—Continued.

Units Allpap’|d
(in j-eoordinates) orplld,c, = 1
4 :.f =(1: 2,2, %r %) %) +1. 2
= 3(15,7,7, -1, -3, —3)
C3 = —~1. €1=Eg‘=€3=1
;4,:f = (1, 2,2 -1,0, 0) +1. 2,3
F=03,22100
&=—1. ¢=¢=¢=~0
F18 :f =(1: 2) 2, —"%r 0) —%) *x1.
g =(15/4,2,7/4,% 1 1)
¢ =1 g=16=0,6&=1
Fiu:f=(1,22000) +1. 2
§=(4220,0,0)
Cy = —1. €1=€2=€3=0
{8 :f = (1; 1) 4) 0) 07 0) :Eli ﬂ:j:i " 2
§= (441,00, 0)
62__1 €1=€2=€3—0

=(2,2211,1) +1. 2

.
18 -«

= %(197 19, 4, 2: 2: 1)

=—1 g=¢=1,¢6=0

=(1,23, -1, —%0) +1. 3

= (5; 11/4: 2) 1, 1, %)

=—1. g=0,6=1,¢=10

w:f=(,1,6,00, —3%) +1, £js, :|=(1 — Ja)- 3
9— =(6’ 6’ %’ 0’ 0’ 3)

7’ .
18 ¢

f
F
Ca
Fio:f= 1,1,5 -3 —3,0) 1, 475 . 3
F
C;
f
F

6=—1 g=6=0,¢ =1

wef=1402,221%11 1. 2,3
F = (15/4’ 3,30, —%) —%)
G=—1. ¢g=16=¢=0

Fuo:f=(,23, -1,00) =+1. 2
F=(532100)
&= —=1. ¢ =€&=¢e¢=0

Fu:f=(@,23,0 —30) +1. 11
F = (6,11/4,2,0,1,0)
&:=—1. eg=g=0,eg=1

Fu:f=1(22200, —1) *1. 2
F=(443,00,2)

-1

6= =6=0

o

3 =
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Table I—Continued

Units Allpsp’|d

(in j-coordinates) orplld,e, =1
:f = (2s 2’ 2: _%9 —%J _%) +1. 5
g = 3(15, 15, 15, 5, 5, 5)
C5="'1- €1=€3=€3=1
f=02224%44 D *1. 2,3
§ = 3(15, 15, 15, —3, 3, —3)
03="—1. El=€2=53=1
:f=10(,3,3,1,4%,1%) +1. 2
§ = (8 11/4, 11/4, —3, ~1, —1)
C7=—1. €1=0,€2=€3=1
f=(2,220,00) +1 2
§ = (4,4 4 0,0,0)
Cz=—1. € == € = € =
f=1(223 -1, ~1,0) 41, 2
5= (554,22 1)
Cy = —1. € = € = € =
f=(223,00 —1) 41 2,3
g =(6,6,300,3)
02—'—1. € = € = € =
f=1(,33,00,0) +1. 2,3
F = (9: 3,3,0, O: 0)
03=_1. €1=€2=€3=0
f =1, 4,4, —2,0,0) 41, 2
F = (12,4, 4, 2, 0, 0)
C3 = —1. €1=63=63=0
=142334%1,1) +1. 5
F = (35/4,5, 5,0, —5/2, —5/2)
Cz‘_—"_l. €1=1,€2=€a=0
:f=1(233,-%0,0) +£1. 3
F = (27/4,6,6,3,0,0)
62=_'1. €]=1,€2=€3=0
J=8633%44%49 =1 3
§ = 127,27, 27, —9, —9, —9)
02=_1. €l=€2=€3=1
f=@,33, ~1,~1,—1) +1. 2
§ = (88,8 4 4 4)
CZ=—'1. 51=€2=€3=0
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Each of the 39 norm-forms F represents all positive integers except in the fol-
lowing cases:

F,:

Fi:

F,:

Fg:

Numbers excluded
dn 4 2
3n + 2
an + 2
in 4 3
4n + 2
3(Bn £ 1)
3n + 2
3n 4+ 2
4n + 2
5n 4+ 2

F,
Fg
Fy
Fis
Fls
(44
18

FIS
144
18
rrr
18

Fau
sz
F27

Equivalent diagonal
form:

(1, 1,1

Units: &1, 4, , &1z, 1,
(1 k) k1 1)
1,13)

Units: 1, 31,,

HH(1 £41), =00 =% %)
(1,1,1)

Units: 41, 24, , &4, , £
1,2,5)

Units: 4=1,
:]:(:l:% + 1"51 - i'l'a)
(1, 1,3)

Units: &1, =1,
(1,1, 1)

Units: 21,

=(£d + 30 — 3 — 1)

1,1,7)

Units: £1, &7 .

1,1,1)
Units: &1, k1, .
(1,1, 1)

3n + 2and 3(3n + 1)

Table 11

Form of

F,

Fa
Fsy
Fiy
Fi
Fis
Fy
Fy
Fsy
Fi,
Fot

Quaternion in

new system.:

31,1, L1

3(1,1,1,1)

1L, LLI)

121,21

3L, LLY)

31, L,L0

3(1,1,1,1)
1,1,1,1)

31, L1 1)

Units: 1, =3(£1 4 4 + 4, + 23)

{
{

Numbers excluded

in+ 2

4n 4+ 2,and 4n 4 3
4n + 2, and 4n + 3
3n+ 2

3n+ 2

4n + 2, and 4n 4 3
5n + 2
3n+2and 3(3n + 1)
3n+2and3@3Bn £ 1)
dn 4+ 2,4n + 3, and
8+ 5

Integrality conditions:
¥: integers and

Yo=Yy = Yo = Yz, mod 2.

Yo =Y1,Y: = Y5, mod 2.

none
W1 + Ys = 2y2,m0d4.
Y1+ %2 = %, mod 2.

Yo = Y1 =Ys = ¥, mod 2.

Yo =71 =Yz = ¥s , mod 2.
Y1 = Y2 + Y5, mod 3.

yOEyl’yzEyB;mOdz-
ylEy2)m0d2-

Y1 =Y = ¥z, mod 4.

{?/o = y;, mod 2.
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Equivalent diagonal

Units:

Units:
Units:
Units:
Units:

Units:

Units:

Units:

Units:
Units:
Units:
Units:
Units:

Units:

form:

1,1,3)

=1, =5(1 xi))
1, 2,5)

+1.

1,1,1)

+1, £, .
41,3

+1, dt,
1,1,3)

£1, £3(1 + 9).
1,1,3)

+1.

1,1,1)
+1.

(1, 2, 13)
=3
(1,1,1)
+*1.
1,1,1)
+1, %4 .
(1,1, 1)
=+1.
(1,1,1)
+1, 41, .
1,1,1)
+1.

(1,14, 1)
+1,

+3(£1 + 4 + 12 — 13)

Units:

Units:

Units:

Units:

,1,3)

+1.
1,2,5)
+1.
1, 1L 1)
+1.
1,1,3)
+1.

Table II—Continued
Form of
Quaternion in Integrality conditions:
new system: ¥y integers and

%(17 1; 1’3) ?IoEZIz:yxEya’mOd2-

31,1, 1,1)
$(1,1,1,1) {yo =y =Yz = Yz, mod 2.

Y = 2;1/1 y mOd 5.
(1,1,1,1) none.

Yo=Y + Y3 = Y2, mo0d 2.

%(11 1,2, 2) Yo=U,Y2=VYs, mod 2.

3(1,1,2,2)
or3(1,1,1,1)

Yo = U Ey2+ys,m0d2-
Yo = ¥, , mod 2.
2!/1 =Y — 3,1/2 s mod 8.
(1,4,1,1) %+ y: + ¥ = 0, mod 3.
%(2) 17 2’ 1) {ys =1 + Zyz B mod 4.

Yo =t + ¥, mod 2.

(1,1,1,1)  yieven, y, = ys, mod 2.
(1) 1; 1: 1) Y1, Y2 €VED.
(1: 1) 1} 1) W =Y = Ys,y mOd 2.

%(17 31 3, 1) Y=Y =Y = Y3, mod 2.

yoEylsyz’——‘ya,modz
4y, + v + ¥ = 0, mod 9.
yoEynEyzEya,modZ

3(1,1,1,1)
3(1, 1,1, 1)

Y1 = Y = —ys, mod 3.
yOEyly?leys,mOdz-
2y, = ¥ + y; , mod 4.
Yo=Y = ¥z = ¥3 , mod 2.
Y1 = ¥z, mod 2.

11,1, 1,3)

ori(1,1,1,3)
32,121

%(1} 1) 17 1) Yo = Y1 = Y2 = Y3, mOd 2.
v1 + ¥s = 3y, , mod 11.

1,1,1,1) Y1 = ys, mod 2.
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Table II—Continued.

Form of
Equivalent diagonal Quaternion in Integrality conditions:
form: new system: ¥; integers and
Fo: (1: 2’ 5) %(21 17 2; 5) Y — ¥ = 2'!/2 ) mod 4.
Units: &1. Yo — Ys = Y , mod 2.
F27 : (ly 1; 3) %(1) 1; 1) 3) i = —Y2, mOd 3.
Units: +1. Yo = Y2, Y = Y, mod 2.
Fop: 1,1,7) 3(1, 1,2,2) Yo=Y =Yys+ ys, mod 2.
Units: 1.
F82: (1) 1; 1) (1, ]-; 1; 1) hh =Y =Y = 0) mOd 2.
Units: £1.
et 1,1,1) 1,1,1,1) Yy, = 3. = 0, mod 2.
Units: £1. {21/3 =y + ¥., mod 4.
Fa: 1,1,1) (1,1, 1, 1) Y1 = Y2 = Yz, mod 3.
Units: &=1.
6 ¢ 1,1,3) 1, 1,1, 0 ys = 0, mod 3.
Units: 1.
Fi: 1,1,3) 1,2, 1, 1) Ys = Y3 , mod 2.
Units: +1.
Fy: 11,1 3,5 1,1) [yo=1y =%y =y, mod2.
Units: 1. 2y, = y; , mod 5.
FM: (1) 17 1) %(1; 1’ 1; 1) Yo = =Y:2=Ys, mOd 2.
Units: 4-1. Y = Yz = Y2, mod 3;
¥y + y2 + v = 0, mod 9.
124: (1) 17 1) %(1) 17 17 1) Yo=Y = Y2 = UYs, mOd 2)
Units: 1. 4y, + y; + y: = 0, mod 9,
Y = ¥, , mod 3.
or3(1,3,3,3) Yo=Y =19y = ys,mod 2.
Fy,: 1,1, 1) (1, 2,2 2 th+ vy + ya =0, mod 2.
Units: +1.
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