QUATERNIONS AND SUMS OF THREE SQUARES.*

By Gorpox Parr.

1. U. V. Linnik * has given essentially the following result:

TrEOREM 1. Let p be an odd prime. Denote by r(m) the number of
pure and proper quaternions T = 4,T; -+ 1:T> + taTs of norm m, where m 1s a
positive integer such that

1) m 5~ 4k or 8k + 7, and (—m | p) = 1.

Let z, be a solution of the congruence z,>=-—m (mod p). For each x con-
sider the right-divisor (unigue up to a left unit factor) of x4 =:

(2) zo + = 2t, z and 1 integral quaternions, Nt — p.

Then, if m 1s sufficiently large, every quaternion t of norm p occurs among the
r(m) equations (2).

Linnik’s proof is rather ingenious, but contains a serious error, in that
on p. 877 he states that “the number of representations of a given binary
quadratic form of determinant D as a sum of three squares does not exceed
ceDe,” and “this can be proved by methods similar to those of Gauss.” This
statement is false for forms of the type kh?(I1&2 + 2mén + ny?) if h is large
(see our (41)); and Linnik applies 2 it for forms in which kA? may be as large
as A%, A=In—m?2 Direct application, in his article, of the true result
introduces a large factor which would seem to vitiate his proof.

In this article we shall revise his proof (which covers nineteen pages, and
contains duplications, misprints, and superfluous details), and apply recent
results ® of our own to complete his demonstration of Theorem 1.

To facilitate comparison with Linnik’s Russian paper we add the following
remarks. His result, tantamount to Theorem 1, is stated on page 365. He
does not formulate it as a separate theorem, but remarks that its proof is the

* Received June 4, 1941.

1“On the representation of large numbers by positive ternary quadratic forms,”
Bull. of the Acad. of Sci. of the USSR, math, ser., vol. 4 (1940), pp. 363-402 (Russian).

2 Ibid., pp. 377 and 382.

3 References will be made to Pall I and II: I. “ On the arithmetic of quaternions,”
Transactions of the American Mathematical Society, vol. 47 (1940), pp. 487-500; II.
“ On the rational automorphs of 2,* + ,? -+ 2,2, Annals of Mathemaiics, vol. 41 (1940),
Pp- 754-766.
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chief difficulty. The proposition which he applies our Theorem 1 to prove, and
which is correct in view of our work, is as follows:

Let f be a positive ternary form with the invariants @ — p, A = 1, where
p is an odd prime. Let (—f|p) —1. Then every large integer m prime to
p and consistent with the generic conditions of f, is represented by f at least
cih (— m) /(log log m - log log log m) times.

On pages 390-401 he somewhat sketchily extends this result (with m prime
to 2Q) to forms f of invariants (Q,1), where @ is odd and contains 2t least
one odd prime factor p such that (— f | p) = 1. His proof involves generalized
quaternions,'and contains the same errors as in the earlier case. The correction
of these errors may be more difficult.

2. Notations, The letters a,- - -,¢,%,- - -, 2, and K, L denote integral
quaternions of the type a =q, —|— 130y - Toft -} 1303 With rational integers a;
and 4> = —1, ete. Latin letters f,- - -, s, and letters with subscripts (except
the quaternion units 4,) denote rational integers. The letters i, k2, - - denote
positive constants independent of m, and depending at most on p and . Here
€ is any given positive number.

We call @ pure, or a vector, if ao==0; proper if (a, 1,82, 3) = 1, proper
(mod k) if (ao, 84,02, a5, k) = 1. The norm 3,2 of @ is written Na; the real
part ao, ® (¢). Every a has eight left-associates = a, =+ 1,0; we may speak of
these as “ one quaternion ” instead of eight.

3. By adjusting unit factors we can confine £ in () to p 4 1 non-left-
associate quaternions of norm p. Let us assume, for the sake of contradiction,
that one of these values t is missing among all r(m) equations (2). Then #
(or its associate) is also missing. For (2) implies

(3) To 4y =2, Yy = —tzt,

where y is evidently pure, integral, and of norm m; also, y is proper, since a
prime dividing y would divide m (= Ny) and pr (=— #yt).

Qur assumption implies further that if z,* 4+ m==0 (mod p*), and we
consider divisors » of norm p?,

(4) Zo + &=, Ny = p?,

and factor v as 84" - - -£(® (=1 or = 1,), then neither ¢ nor  occurs
among these factors of norm p. For, from

(5) Ty -+ & = atb, Nb=p, r=0,

follows o - bzbt == bat, where bab™ is another =.
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Linnik has the happy idea of choosing s variable with m:

(6) m¥T = pr < pmdtT,

where r ig the fixed fraction (between 0 and 1/5)

(M r=—1%log(1—p*)/log p.

Hence p"=1—1/p, and we have

(8) p(p—1)** <2p°(1—1/p)* =2(p") """ < ramd*™

Hence the number n of distinet divisors # which can occur in the r(m)
equations (4) cannot exceed 8x,m¥>". For, ¢ cannot be ¢ (by our assump-
tion), and #” can be neither £ nor f nor #, at least two of these being non-left-
associate, and so on; (if # and ¢” were associates, v would be improper). We
may observe that, s being variable, p(p—1)** i3 not of the same order of size
ag the full number p* -+ p-* of proper quaternions of norm p; this is the cracial
point in Linnik’s method.

Let these n ‘distinet v’s occur, respectively, for a,,as,- - -, an distinet
vectors #. Accordingly,

(9) - Fam=28r(m), n < 8xmi?,

We shall use the result of C. L. Siegel * that

(10) kom¥ e < r(m) < xgmde,

Hence a2 4+ * -+ = (a2 + - - - + @n)2/n = kem?-%/md-*7, or
(11) G2+ 0n® = kemET R

We shall ultimately prove that (without any assumption)

(12) @ @a? < kemEE

and shall thus obtain the desired contradiction.

We observe, as in connection with (3), that 5 occurs exactly as often as v.
Let us call (z,y) a conjugate pair if z and y are proper vectors of norm m,
and any right-divisors of norm p* of , + = and of z, + y are conjugates. The
number of conjugate pairs is g, - - - 4 aa’

4, Pairs (x,y) associated with binary quadratic forms. We formulate
a result from a recent article® (Linnik uses a similar result due to Venkov).®
Let m > 1, and let [2] denote a set of four proper vectors

+ ¢ {fher die Classenzahl quadratischer Zahlkorper,” Acta Arithmetica, vol. 1 (1935),

pp. 83-86.

5 Pall I, pp. 495-497. The writer did not then know of Venkov’s result.

8 B. Venkov, “ On the arithmetic of quaternions,” Bull. Acad. Sci. USSR, VI series,
vol. 16 (1922), pp. 205-246 (Russian).
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T = &1 | 02 + 13%3, — U@l = 1% — ey — 15T,
— gl = — 1.1371 —+ Lo — ":sxs, — Gg®ly = — T — T2 -+ ’iszs,

(13)

of norm m. With every class of properly primitive binary quadratic forms ¢
of determinant m is associated a process, expressed by (15) and (16), whereby
every [z] is carried into a unique [y], and no two distinct [#]’s go into the
same [y]. For a fixed [#], as ¢ ranges over the p. p. classes of determinant m,
[¥] ranges over all proper %’s of norm m such that

y==z (mod 2), if m==1 or 2 (mod4),

(14) [y] == [—2] (mod 4), if m=3 (mod 8).

That is, y runs over } or % of all proper vectors of norm m.
If ¢ = [k, 2h,1], h® - m = kl, the process is defined by

(15) h+z=KIL, h4+y=LK,

(16) y=Lal' = K%zK,

where K and L are respectively of norms % and 7.

5. Conditions for conjugate pairs associated with ¢. Besides (15)-
(16) if (=z,y) is a conjugate pair associated with ¢,

an To 4 T = uv, Z, + y = u*v,
(18) Ze2+m=gqp*, Nu=—q=—Nu¥,
(19) Lz—yL, Rz=yK.

If we replace zo by p°, ¢ becomes q + 2z, -}- p>. We thus secure
(20) (¢,p) =1
We can take ¢ to be reduced, and hence
(21) 2R|=R=1, Rl=4m/3, k2 = 4m/3.
LemMma 1. Let m > my(p). For any conjugate pair associated with ¢,
(22) vK is pure, and p* | ® (vL).

For, L(z, + %) = (%o + y) L, or Luv — u*vL. Since (¢, p) =1, DL has
the same right-divisors of norm p? as u*3L." We can set

(23) 9L =wv, TK=w".

" Pall I, p. 488, Lemma 2.
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Hence v is a right-divisor of the quaternion z — %L, and of Z and of 242
— 22,. Hence 22, = ev, p* | 22,7 where 7 is proper, p* | zo:

(4) | R@L), p*|R(TK).
Trivially, ® (78) — ® (vK) — R (Kv) — ® (E7). By (21) and (6),
(25) | R (oB)| = (No- NE)% = (p*k)% < kb,

Since p® = m#*7, (22,) follows. For vL we have similarly
| R (vL) | < phokoweTh;
and would have ® (vL) = 0 if | < 2m¥77 with » > 0. Hence:
Lemma 2. If for =12, or for any fized n > 0, we have
(26) k= min
then vL is pure for m > my(p, ).
Since v and K are proper,”™ we can set

v=vt, K=IK', Ni=p°, 0=0=s, NV =p*",

7 NK’ = ¥ = k/p°, while v’K’ is proper and pure.

The number of distinct values o cannot exceed «; log m < xgme.
From (15)-(19) we obtain

ToFz=w't, @ -t+y=u*, h+z=IK'L,

(28) h+y=LiK’, Kiz=yK1.

Hence o’ = tzt* is a proper vector of norm m, and

(29) To+o —tuw’, Ky=oK, h+o =KL

Now v'K’ — — ed, where e — K/, d — 7. Hence we have
(30) — etued = etuv'K' — e(wy - &) K" =¥ (%0 + y), or
(31) ¥ | etued.

Since ed is proper, the greatest common left-divisor of K’ and d is 1, and we
can solve K’z -+ dw =1 in integral 2 and w. Hence

k| etuedw — etue(1 — K’2), k' |etue,  or

(32) R'tu=7K’, 7 integral.

7 Pall I, p. 491, Theorem 5.
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Since K” is proper, it follows as in (23) that &’ | ® (etu), or
(33) R'tu— fl 4 1,0y + e -+ tbs =K -+ b,
where f, by, bs, bg are rational integers. We also set

(34) VK — 1,0, + 1202 + 1305 = a.

By (30) the real part of (f¥ + b)a= etuv’K’ is ¥'z,. Hence by forming the
norm of & -4 (f& -+ b)y in two ways we obtain

(85)  K(po8 + Raobn+ p7gn’) — (F¥) %
= (@€ —buy)* + (26— bym)® + (asé — ban)®.

Thus every conjugate pair associated with ¢ leads for some o to a repre-
sentation of &y as a sum of three squares, where

(36) ¥ = [p*°, 220, pPq— ).

However, only those representations in which

(837Y)  ais proper, and a, b have the same right-divisors of norm ¥/,
need be considered in connection with conjugate pairs. We have
(38) the determinant of ¢ is equal to m — ps—°f?F/,

and since this cannot be negative, (6) shows that

(39) | f| = m¥hrpe /%,

Conversely, no particular complex of values f, @, b can arise for a given o
from more than 64 conjugate pairs. For ¢’ (and therefore K’) has at.most
eight values as a divisor of norm p*~° of a; fu is given by (33), and as Nt = p”
is prime to Nw, ¢ has at most eight values; 2’ and y are determined by (29),
and z == {22

6. Forms ¢ with large minima. We prove

LemmA 3. Let m > m.. Let the minima k, ¥ of ¢ and ¢ satisfy (26),
and let (z,y) and (z,y") be conjugate pairs associated respectively with ¢
and ¢'. Then y=1y .

For by Lemmas 1 and 2 we can write (temporary notation)

Ko @ — iy - intts + ists, L= b == by - isb - dsbs,
K"U == (= 1:161 + 7:202 + ’l:363, WL’ == d = 'l:ldl + igdz + 'igd;;.
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The vector parts of ab and c¢d are equal :
Kv- 9L = p*(h -} z), KoL = p*(W + z).

Hence, the first equality being determinant for determinant,

@ a: a € € C o bod

Iy G2 Os|__|C1 Oz Os , b d| —

By by by| |d e ds|” " Z: b g
Since ab = p*(h + «) is not real, @ and b are not proportional. Hence there
are real numbers A and p such that d — Aa 4~ pb, 5L’ = AKv + pvL — — ATK

4 wL, or I == — AR + L. By (19), 'z —=yl/, y= L'zl =y

CoROLLARY 1. The number of conjugale pairs associated with all forms
whose minima k satisfy (26) is, for large m, at most r(m) < xsm¥*e.

7. The number of representations of a binary quadratic form as a
sum of three squares. Let N be the number of solutions of

(40) (I8 + 2méy + o) — 2 (@t -+ Bin)?

in integers a;, b;. Here y= [1,2m,n] may be assumed to be positive, and
properly or improperly primitive, A = In— m? and g > 0. There is a general
formula of C. L. Siegel ® for questions of this sort, by which it is necessary
only to calculate explicitly the number of solutions of certain systems of con-
gruences. This was done for (40) (among other examples) by Hel Braun®
in the case g%A odd, and our results agree with hers for that case. The general
result for (40) is as follows:

(41) N =24T] x(p), where

x(p) =31+ (—o | B) (—a| k)] i p—2,
= (14 87) (plr/ — 1)/ (p—1)
+ @) (1Lt P it p> 2.

Here the product is taken over all primes p; and for any p,

g=p7k’ A=p§E, 7:820: kaE) 0=%(3_(—"1)7):
r=3(B—(—1)%;a=(—1|B)if p=2;{=(—ky|p) and
2= ((—)E | p) it p > 2.

8% fher die analytische Theorie der Quadratischen Formen,” Annals of Mathe-
matics, vol. 36 (1935), pp. 527-606.

® % {ber die Zerlegung quadratischer Formen in Quadrate,” Jour. fiir Math., vol. 178
(1937), pp. 34-64 (p. 62).
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In the Legendre symbols y is to be replaced by any number represented by ¢ and
prime to p. Note that x(p) =1 if p{2gA.

In particular, if ¢ is quadratfrei, so that y is 0 or 1 for every p,
x(P) =148 y=0, x(p) =2 if y=1, and N/24 does not exceed the
number of divisors of gA, which is O(gA)e<.2°

If we consider only the representations in which (a., gz, as, by, b, bs) =1,
N is not materially reduced ; for x(p) is replaced by

(14 )l (2—0) (1 + L+ - -+ &) (p— 1) " when y Z2.

8. Returning to (35) we write ¥’ = k”h?, where A2 is the largest square
in ¥, h > 0. Since v"K’ is proper and pure, k"= 0 (mod 4).

LeMMa 4. Bvery representation (35) satisfying (37) is of the form
(42) @ = %%, b — zdz,

where z is a proper quaternion of norm h, and ¢ and d satisfy
3
(43) ¥ (=o€ - 2oobn + (979 — FW)n") = & (cié — dn)™.

By (87), ba==0 (mod k¥”h?). Let 2 be the left-divisor of norm % (unique
up to a right-unit factor) of the proper vector ¢ =— zw — — #2. Since ba=0
(mod ), Theorem 5’ of a recent article ** shows that b =2w’. Then ww' =0
(mod k), w is proper, and h | Nw. The right-divisor of w must be z, and we
have (42). By (42) and (35), Nc== (Na)/h*=Fk"p*°, Nd= (Nb)/k*
= (Kgp° — (f¥')*) /h* = ¥ (qp° — f*¥'),— Sosds = B (od) = B (scz2dz) /1>
= R (ab) /h? = z,k’ /h? = z k.

Since d may be improper we write ¥ = kk,, d — k.d’, where d’ is proper
(mod %,). We note that if /=2 (mod4), then 2| ® (¢d), 4| N(cd),
hence 2 | cd. We shall prove that (43) implies

(44) dec— K'z, + Ky, 4 pure and integral.

For we have &” | N¢, ¥’ | Nd, ¥ | 3 cidi. Hence k, divides each of N¢, Nd/,
and 3 ¢;d’;, where ¢ and d’ are proper. By Corollary 10,*2 k, divides the vector
part of d’c; hence k” divides the vector part of de. By (43),

(45) Ny = m — p*°f?k""h>.

10 For example see Hardy and Wright, Theory of Numbers, Clarendon Press
(1938}, p. 259.

1 Pall 1, p. 492.

12 Pyl 1, p. 493.
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The condition ba=10 (mod ¥”h?) requires that we find the number of
proper quaternions z of norm % such that 2dcz =0 (mmod &”h), that is, by (44),
such that z¢/Z2=0 (mod k). Write "= hyy”, h == hho, where ¥y is proper
(mod %;}). We have to solve

(46) ‘2y"2=0 (mod h;), Nz—h, z proper.
By (45) we see that h,? | m and that Ny” = m/h,* (mod k).

9. On the congruence (46). We recently proved **

LeMMma 5. Let ¢ be a proper vector of norm n, h be odd and positive.
The proper quaternions ¢ of norm b such that tzf==0 (mod h) are the same
as the right-divisors of norm h of x, -+ , where x, ranges over the solutions
zo (mod k) of #2==—mn (mod k).

Let « be an odd prime. Varying our notations somewhat, we denote by
¢, in this section any proper quaternion of norm »". In Lemmas 6 and ¥, z is
pure, and proper (mod =). We have first

LemmA 6. If w | Nz and t,af, =0 (mod =), where r = 1, then the right-
divisor of norm = of &, is the right-divisor of norm = of .

For we can write £, = tybyty, Where r =k + 1 -+ g, gzl 5% 0, tytgzish =0
(mod =). By Lemma 5, ¢, is the right-divisor of #,2#; of norm = This con-
tradicts the properness of f,f, unless ¢ — 0.

Let v, be the number of solutions z, (mod #*) of 2= —n (mod =*),
where n == Nz. The v, non-left-associate solutions ¢s of

(47) tswls =0 (mod =*)
will be denoted specifically by u,. We have

LemMa V. Let r=s=0,r>0. The general solution ¢, of
(48) tyzt, =0 (mod =*)

is given by t,_sus with t,_, rvestricted only by the properness of trsus. Hence
the number of non-left-associate ¢, satisfying (48) is a5 if s > 0, »" - u"
if s=0.

The case s =0 is trivial. Proceeding by induction assume the lemma fo
be true with s—% (1 =k = s) in place of s. We can factor any £- as ¢r_sts.
If (48) holds, either i) fozf,==0 (mod #*) and fr, can be taken arbitrary,

13 Pall II, p. 763, Corollary 6.
p
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which is what we wish to prove, or ii) v = (fs2f:) /=% is integral, and proper
(mod =) for some k, 1 <%k =s. By assumption, in case ii), f;==fxlls.s,
whence v = fywi, w integral. Now tr_svir.;, =0 (mod *, hence mod =), and
by Lemma 6, the right-divisor of norm = of ¢, is equal to that of v, hence to
that of #. This implies that ¢, is improper, so that case ii) is impossible.

CorOLLARY 2. Let =2 (¢ =0) be the highest power of = dividing y'.
The number of quaternions i, such that t,4'f, =0 (mod =*}-is

(49) =+ D ifg=r=1, % fg<r,
where v is the number of solutions « of a® ==— N (y'/27) (mod »"-9).

Cororrany 3. If ¢ is replaced by Aay'a where (ANa, =) — 1, the number
of quaternions t, in Corollary 2 is unchanged.

Write b — wpf® - - - w2, ™ in powers of distinet odd primes. Every proper
2z of norm % can be factored (uniquely up to left unit factors) as zu- - - 2s2,
with 2z; of norm =;**. The congruence (46) becomes

2 'Zzzly’iliz [P EPEO (mod mTte o 7’}‘“‘):
and reduces to the sequence of congruences
29’7, =0 (mod m"), 2,(2:9'%: )72 =0 (mod =."2),- - - ;

and the numbers of solutions are, by Corollary 3, respectively the same as those
of 292, =0 (mod m™), (=1,2,- - -, p).

COROLLARY 4. The number of solutions of (46) does not exceed 27", ¢,
where £ is the number of soluttons a of

(50) o =—m/h;? (mod hy).

Here v(n) denotes the number of distinct prime factors of n, and we recall
that 27(® < d(n) — O(n¢), where &(n) is the number of divisors of n.

As for & we have £ =2"Wh % where hy = (hs, m/h;?). Hence the
number of solutions of (46) does not exceed

(1) (d(k))?" (he?ha)¥ = (A(R) )%, where p— (m, k') = (m, F).

10. We count the conjugate pairs. Linnik classifies the values % not
satisfying (26) into r intervals B;B;, where 7 < x, log m < &1 m¢, as follows:

A B, --- B B, B
0 1 m3-(7-n)
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Here AB; —mi 7 e Imd- "D AB, — mi7 = mé, - - - AB, — mt7r =
It = mdr —AB, < Lr— g <n<n<l <
Suppose then that we have

(52) Imtr <k = mr (=S mi-(tm),

Linnik states incorrectly that the number of reduced forms of determinant
m with a given minimum % (< m*) does not exceed x;; mf. The following
example shows that this is false: m — 2 - 8%, k — 8%, and the 2- 87! forms
[8%, = 2- 37, j24 2 3%*] with | j| = 3"/2, 83{j. The true result is that
the number of such forms is equal to the number of solutions of a?=—m
(mod %), hence does not exceed 22@® (k, m)*%.

The number of sets of forms with % in (52) having a fixed value for
p=(k, m) is d(m) < x1» m¢; and for a given ¢ (where p° | k), the number of
values k& with given p does not exceed m¥*/pp®. The numher of values of f is
bounded in (39), where we can replace k¥ by 3m?>. Lastly, the number of
values ¢, b does not exceed the number of values ¢, d satisfying (43) (which is
= 2d(g,) < ks m®, gi=F"(m — p*°f2k’)) multiplied by the number of
solutions # of (46), which we bounded in (51). Putting these together we see
that the number of conjugate pairs associated with all forms not satisfying
(26) does not exceed

mEv o h—AT
K14 ”p Pt pmsHy

(me) 7T — Kz mHv—iTﬂe

for the least value of v, which is » — 7, hence < x5 mi—+7+,
Comparing this with the result of § 6, we have (12).

McGILL UNIVERSITY,
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