ON THE FACTORIZATION OF GENERALIZED QUATERNIONS

By Gorpon PaLn

1. Afundamental theorem in the arithmetic of Lipschitz' integral quaternions

¢)) v = v + w1 + vy + davs,
where the v; are rational integers and the 7, are the familiar Hamilton units
(¢% = —1, etc.), is that any proper v (i.e., one in which v, - - - , v3 are coprime),

whose norm Y »? is divisible by an odd positive integer m, has exactly eight
right-divisors ¢ of norm m, these forming a class of left-associates

2) =4, +1t, 215, 15,

In this article a connection is set up between the problems of factoring “gen-
eralized quaternions” (defined in §3) and of representing the number 1 in a
certain quaternary quadratic form 8. Hence the problem is reduced to that of
equivalence of quaternary quadratic forms. However, the order and genus of S
is readily identified. Hence in all cases where there is but one class in this
quaternary genus, a theorem of the type quoted above will follow; and when
several classes occur in that genus, some similar theorem may be deducible.

Our definition of generalized quaternion, based on Hermite’s identity,” con-
nects the theory with ternary and quaternary quadratic forms, rather than with
binary Hermitian forms as in Dickson’s definition. For results similar to ours
in Dickson’s generalized quaternions, perhaps the best reference is Ideals in
generalized quaternion algebras, Trans. Amer. Math. Soc., vol. 38(1935), pp.
436446, by C. G. Latimer.

2. Our method is based on a process of Hermite’s,® who in turn was guided by
Gauss’s algorithm for reducing the representation of numbers in a binary
quadratic form to the solution of a quadratic congruence and to identifying
the class of a form constructed from the solution. We shall introduce the
method by exhibiting a similar device for quadratic fields. We shall confine
ourselves, however, to fields in which the integers are of the form

3 v = v + o, v and »; rational integers,

where o = —D is a non-square rational integer. There is no difficulty in
extending the theory to w* + w + (1 — A) = 0. Similarly, in this article we
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t R. Lipschitz, Jour. de Math., (4), vol. 2(1886), French translation by J. Molk.

2 C. Hermite, Jour. fiir Math., vol. 47(1854), pp. 313-330; Oeuvres, vol. 1, 1905, pp. 200~
220, especially p. 212.

3 Hermite, Jour. fiir Math., vol. 47(1854), pp. 343-345; Oeuvres, vol. 1, pp. 234-237.
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ON FACTORIZATION OF GENERALIZED QUATERNIONS 697

shall treat only the simpler case of quaternions associated with Hermite's
identity.* The extension by means of Brandt’s generalization® of Hermite’s
identity is being investigated by students of the writer.

Let p be an odd prime not dividing D. How many divisors of norm p does v
possess? For this we must consider

4) v + v = (o + ww){to + tw), to + Dt = p.

On taking norms we see that p must divide No = v§ + Dvi. Assuming this
and multiplying both sides of (4) by t = t, — tiw, we get

(1)0 + vlw)(to — t10)) =0 (mod p),
(5) volp + D‘Ult1 = 0, Ulto —_— votl = 0, (mod p)
Now assume that p does not divide both (and hence either) of v, v,. Then
the condition p | Nv makes either of conditions (5) imply the other. Either

of them reduces to &, = et; (mod p), where e is an integer = »y/v; (mod p).
Thus if p | Nv, (5) will be satisfied if and only if

to = pXo + eX;,
t1= Xl,

in integers X, , X, ; and then vf = 0 (mod p), vi = pu, vit = put, v = uf, pro-
vided for the last step Nt = it = t§ + Dif = p. If we substitute from (6), the
condition Nt = p becomes

) pXs + 2eXoX, + fX1 = 1,

where f = (¢’ + D)/p. The form [p, 2¢, f]is of determinant D, and will repre-
sent 1 if and only if the prime p happens to be represented in 25 + Dz1; and then
the number of divisors ¢ of norm p of v willbe 2if D > 1, and 4 if D = 1; if
D > 1, the divisors are +t¢, if D = 1 they are =f{ and 4-7¢. When there is only
one class in each genus, the condition for p to be presented in x5 + Dz; can be
expressed simply in terms of Legendre symbols.

(6)

3. With a symmetric matrix @ = (aas) of order 3 in a field §, we associate a
system of quaternions
8) t =ty + als + %2tz + %ts,

where the {; range over § and 7, , 72 , 75 satisfy the following multiplication table,
A .5 denoting the cofactor of a5 in a:

.2
ta = —Aaa (@=1,2, 3).
(9) a8y = —As -+ anty + ani: + aists,
Tgly = —Agp — aui; — apls — Gty ’

4 See footnote 2.
¢ H. Brandt, Math, Annalen, vol. 91(1924), pp. 308-309.
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13t1, etc., being obtained by permuting subscripts cyclically. Multiplication by
scalars (in §) is defined in the obvious way, addition by adding corresponding
cobrdinates. Addition is commutative and associative, and sealar factors can
be taken in and out of products. Multiplication is distributive over addition.
In general, ut = » is given by the formulas (which are essentially those of
Hermite) **

3
vy = Uply — Z Ausials,
a,f=1

(10)

Va

3
uota + uato + Bz; W Afa (a = 17 27 3)!

w = ugly — usle, we = ush — wily, wg = Uly — Ugly.
Seeing that multiplication is associative reduces to verifying
(11) (iatg)iy = ta(isty)

for all choices of subseripts 1, 2, 3. Forming the products by means of (9), we
readily find

(Tata)ip = Ta(talp) = — Aaals,

ta(igle) = (tale)ls = —Apsla,

(12) (Faip)ia = ta(igla) = —2A40gia + Aadls,
(iaYis = ir(isis) = —A — Az + Asiis — Asgis,
(ai)is = alisis) = A -+ Asgiy — Asgiy — Auis

14831 , etc., being obtained by cyclic permutation. Here A = | a5 .
We define conjugates by

(13) Z = to —_ ’l:;tl _— ’l«.2t2 —_ ’I:ats B
80 that by (9), 4st2 = 727 , and readily obtain
14) B=1t=1+ 2 Adlas,

which we call the norm of {, or Nt. Since 4,5 = (—1%)(—1%a) = Igta, and
t + u = 1 + @, we see that the conjugate of (uo + 2 _usia)(fo + 2 teip) is
(to — E teig) (o — Z Uqla), that is,

(15) ut = ti.
Hence from v = ut follows # = {4, whence vv = utii, or
(16) Nv = Nu-Nt.

This is Hermite’s identity.

¢ See footnote 2.
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4. In case the a.g are rational integers we define an iniegral quaternion by (8)
with rational integral {;. By (9) the sum and product of integral quaternions
are integral. If ¥ = wut in integral quaternions, we call ¢ a right-divisor of v.
Then by (16), Nt | Nv.

If ¢ is a right-divisor of v, I is a left-divisor of 5. If ¢, = t; = #; = 0 so that ¢
is a rational integer, ¢ is a right-divisor of » if and only if ¢ | v; (i = 0, 1, 2, 3), and
we can write ¢ | v.

For a given v such that p 4 v but p | Nv, how many right-divisors of norm p
does v possess? From

a7 v = ul, Ni=»p

follows vt = up, vt = 0 (mod p), or (cf. (10)) the system of homogeneous, linear
congruences in &y , # , tz , &; with the matrix W obtained from

0 Z Alava Z AZava E A.’iavu
V1 Gan¥z: — Gl Ou¥s — Gt axt1 — ante
V2 QO32V2 — Q2203 Q12¥3 — Q1 Ueely — Ol

Vg Gl — O3 G3U3 — Al Ggth — A3l

by adding vy, —v, —vy, —v to the elements of the principal diagonal. In
general if p | Nv, W is of rank 3, (mod p). If p|w,, W becomes V and the crux
of our method lies in

LemMa 1. Ifplw, p|Nv = Ausvavs, and p { Av, then two and at most
two rows in V are linearly independent (mod p).

To show that two rows are independent, it suffices since p 4 v to show that
one of Y Agav, is prime to p; if this were not so, p would divide

; Qgy E Aﬁava = Av, (‘Y = 1; 21 3);

contrary to hypothesis. For the rest, it suffices to show that every three columns
are linearly dependent. For the second, third, and fourth columns we use the
multipliers v , vz , and v3 , and adding obtain (Nv, 0,0, 0). For the second, third,
and first columns we multiply by 3 Aseve, — > Ajava, and Avy, and on adding
obtain (0, auNv, a2Nv, asNv). If these multipliers are all 0 (mod p), a glance at
V shows that the second and third columns are proportional.

CoROLLARY 1. With the hypotheses of Lemma 1, if of the conditions

(2- Awavadty + -+ =0, ute + (@nv: — anvs)i + .. =0,
velo + (agevs — Qeevs)ly + --- =0, vsbp + --- =0, (mod p),

the first is satisfied together with the a-th one of the others, where p { va, then all
four condilions are satisfied. Further, for all such ¢;,

(19) PNt =88+ 2 Aaslats.

(18)
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To secure (19) we need only observe that p | vi, p | vit, p | v(NE), p | Nt.

Conversely, any solution ¢ of (18) satisfying Nt = p is a right-divisor of ».
For, vt = pu, vt = put, v = ul.

For definiteness we can suppose that 3 4.2, is prime to p, and solve (18)
in the form

(20) = al; + bty h=cth+ ds, (mod p),
where a, b, ¢, d are certain integers. Then (18) is equivalent to
to =pXo + aXo + 0X;, =X,
L = pXi + cXo + dX;, s = X;,
in integers X;. Substituting these expressions in # -+ D Austats = p, we get

1)

3
(22) "Eo T{,‘X;'X,' = p.
=
By (19), p| X r:;X:X; for all integers X:, whence p divides every r;;; set
rij = ps;i; . Thus (22) reduces to the equation’

(23) E S.‘,'X,'X,' = 1.

The number of divisors equals the number of solutions of (23).

Let P denote the matrix of transformation (21), which has determinant p’;
let ¢, s denote the matrices of the forms Q = & + D Austats, S = D 8:; X: X ;.
That the determinants of ¢ and s are equal follows from

(24) ps = P'qP.

‘We shall see that the orders of @ and S coincide. Since the index is unaltered
by the real transformation (21), this will follow if we show for &k = 1, 2, and 3
that the g.c.d. of the principal minor determinants and the doubles of the non-
principal minor determinants of order % is the same for ¢ and s.” Let ¢ denote a
subsequence of k elements of (1234); for any matrix R let R[s,0:} denote the
minor determinant whose rows have the positions indicated by ¢, and the
columns those of o2. Then by (24) and a simple determinantal theorem,

(25) p*sloros] = ; glos’] Ploay] Plo'as],

where the summation ranges over the (*Ci)’ pairs o, ¢/. Since p £ A, p cannot
divide every qloo']; if 61 = ¢, the terms with ¢lee’] and ¢fe’o] are equal; hence
the g.c.d. of the g[oo] and 2¢[co’] divides every s[se] and 2s[o¢’]. The converse
follows on solving (24) for ¢ in terms of s.

In terms of the order invariants® recently introduced by the writer, let the
divisor and ¢-invariants of the ternary form f = Z Qs Tag be dy, 01, and oy,
Since the a.p are assumed integral, d; is even if o, is odd. The order invariants

7 G. Pall, Quart. Jour. of Math., vol. 6(1935), pp. 30-51, Theorem 2.
8 Same as footnote 7, Theorem 1.
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of the primitive form Q, and therefore of S, are found to be (0di, 0z, 01). De-
note the primitive concomitants by Q. = @, @y, @s. The genus of Q is char-
acterized by the values of the principal characters (@ | w) for the odd primes w;
dividing o;df, 02, 01, respectively, and possibly certain supplementary char-
acters (— 1|Qx), (2|@x), or (—2|@w)." Itis evident that if (Qslw) is a character the
samemis true of (Qiw). It is not difficult to verify also, by using a canonical
form

21 + 2Pmazs 4+ 2Pmeat or 2Pmual + 2“’(mx§ + m'zexs + nx§) (mod 2%

for f, that if any of (—1|Qs), (2|Qs), or (—2|Qs) is a character, the same is true
of Q;. It should be observed that the simultaneous characters need not be
considered here, since for forms in less than five variables their values are fixed
by those of the others."" Further, since @ represents 1, the value of any char-
acter due to Q; is +1.

Finally, it is evident from the process by which S was derived (or from (25))
that if S, represents n, then @ represents p*n. Hence the characters due to Se
and @ are equal, while the values of those of S; (or S;) are obtained from those
of @, (or @) by multiplying by the quadratic character of p. The form S will
therefore not represent 1 unless for each character (Qilw), (—1|Q1), (2|Qy), and
(—2|Q1) which may happen to be an invariant of @, the value obtained on sub-
stituting p for @, is +1. When this holds, we may say that p is consistent with
the genus of Q.

Integral quaternions of norm 1 are called units. Their number, possibly
infinite, is equal to the number p of solutions of

(25") o+ D Aostats = 1.

If 6 denotes an arbitrary unit, the p quaternions 8¢ are called left-associates.
If ¢ is a right-divisor of v, the left-associates 6f form p right-divisors of the same
norm. We have now proved the following theorem in the case p | v, and shall
remove this restriction in §5:

TaeoreM 1. Let (aq5) be a symmelric matriz of order 3, the aqs iniegers,
(A op) the adjoint. Set Q = t; + D> Aagtats. Let p be an odd prime not dividing
| @ag |, v an integral quaternion of the type defined in §3 and the beginning of $4,
p|Nv,p 4 v. Then v has no right-divisors of norm p unless p s conststent with
the genus of Q, and then the number of right-divisors is equal to the number of
representations of 1 in a certain form of the same genus as Q. If this genus contains
but one class, there are exactly p right-divisors of norm p, these forming a class of
left-associates.

CoroLLARY. The last sentence of the theorem holds with p replaced by m,
where m s a product of primes each consistent with the genus of @, and

(26) m 15 prime to 2A, m | Nv, and m, v , v, , vz , v3 are coprime.

* H. J. 8. Smith, Coll. Math. Papers, I, pp. 513-514.
10 Same as footnote 7, Lemma 3.
1 H, J, 8. Smith, loc. cit., p. 515 (relation (A)).



702 GORDON PALL

We prove this by induction assuming the theorem as stated. Assume the
corollary to be true for products m of h or fewer primes consistent with the genus
of @ and dividing neither 2A norv. Let p be such a prime.

Existence. F¥rom v = ut, Nt = m, pm | Nv = NuNi, follow p | Nu, v
where Nz = p, v = w(zt), N(zt) = pm.

Uniqueness. If v = ux = wy, Nz = Ny = pm, then 2 = at and y = bt/,
where Nt = Nt/ = m, ¢ and ¢’ are left-associates since they are both right-
divisors of v; by absorbing the unit factor on the left we can make ¢ = ¢'; thus
ua = wb, where @ and b are both of norm p and hence are left-associates.
Consequently, £ = at and y = bt are left-associates.

There are no characters (Qi|w), (—1|@1), (2|Q.), (—2|@.) if and only if

di=1,0,=4o0r8 16 { o; or
27 di=1,01 = 4,16 | 02, (—1{f2) = —1;0r
d1 = 2, 0 = 1,

f> denoting the reciprocal of f = D @asaxs. In these cases then, if there is but
one class in the genus of Q, there will be exactly p right-divisors of norm m, for any
positive m satisfying (26). An attempt to extend the theorem to such an m in
any case seems to fail because of the difficulty of securing that some minor
determinant of order 2 in V is prime to m.

We may note that if m were negative we would have —1 at the right of the
équation corresponding to (23), since we would divide by |m | to keep the
index unaltered. It may be worth while observing also that the chain of
leading principal minor determinants in the matrix of (23) is p, Anp’, pasA,
A?; which are independent of v.

wz,

5. The problem is reduced to the case p | % by two lemmas:

LemMma 2. If v and w are integral quaternions, and m an integer prime to Nw,
then v and wv have the same right-divisors of norm m.

For'if v = ut, wv = (wu)t. Conversely, if wv = ut, and Nt = m is prime to
Nw = k, then kv = (@u)t, kvl = Dum,

vl = wu(m/k) = integral quaternion.

Hence the cosrdinates of @u are each divisible by &k, v = (@Wu/k)t.

Lemma 3. Let p be an odd prime not dividing A, nor all of vy, 02 ,v5. Then we
can find a pure quaternion w such that Nw is prime to p but the real part of wv 1s
divisible by p.

It is clear that the condition on vy, vy, vs is satisfied if p [N, p { »v. Tam
indebted to R. E. O’Connor for the following simple proof of this lemma. The
problem is to find integers w; , ws , w; to satisfy

(22 Avgw + (3 Asvp)ws + (2 Asvg)ws = 0,

(28) ZAaﬂwawﬁ # 0; (mOd P)
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Using matrix notation, we can write these in the form
(28" w' Ay = 0, wAw #£ 0, (mod p),

where A is a symmetric matrix of order 3 with integer elements, of determinant
prime to p, v and w are vertical vectors and the prime denotes transposition.
By a sequence of elementary transformations we can find a matrix C of integer
elements, non-singular (mod p), such that C’AC = B (mod p), where B is a
diagonal matrix, no diagonal element being zero (mod p). Then (28’) becomes

(29) 2'Bu = 0, z'Bzx #£ 0, (mod p),
where u = C'vand z = C"'w (mod p). Hence we have only to solve
(B0) aruiz; + GU 22 + asusxs = 0, a1 %y + as73 + agzh # 0, (mod p),

where the a, are prime to p, and at least one . is prime to psince p { (vy, vz, vs).
By symmetry we can suppose p { % , and solve for z; from (30) in the form

z = dxe + ex3 (mod p).
Substituting this in @, 2] + @223 + @323, we get
(az + a1d)ah + 2dexzas + (ag + ayed)as,

which has a coefficient prime to p, the first if d = 0, the third if e = 0, the second
if de # 0. This completes the proof of Theorem 1.

6. We shall give a few special cases, making use of Charve’s table' of positive
quaternary quadratic forms of determinant < 20. Instances of our theory
will undoubtedly be far more numerous among indefinite forms, where one class
in the genus is the rule rather than the exception; and among forms in which
some cross-product coefficients are odd, which may be attained by extending
our results through Brandt’s generalization of Hermite’s identity.

Starting with the matrix (a.g) of the ternary quadratic form (2, 2,2, 1, 1, 1)
of determinant 4, we have @ = 1z + 36 + 3t + 3t; — 2hits — 24t — 24tz, and
find for the adjoint,

4Q(3) — 4(41;(2) + 2.’1:? + 222 + 2x§ + 22273 + 21371 + 22172).

Since Q® is improperly primitive, and there is only one such form of determinant
16 in Charve’s table, it belongs to a genus (and order) of one class. The same is
therefore true of Q. Since no generic characters are due to @ and @® (Q®
however represents only (8n + 3)’s), 8 is equivalent to Q. Since @ represents 1
for two values &, - - - , t3 , quaternions v with the multiplication table

. 2 2 .. . . . —
0 =1y =13 = —3, 1293 = 1 + 24, + %2 + 13 = 137, ete.

12 Charve, Comptes Rendus, vol. 96(1883), pp. 773-775.
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have exactly two right-divisors (¢ and —?) of odd norm m, where m (>0) is
assumed to divide Nv but to have no prime factor dividing all of vo, v1, v2, vs .

Similarly we find that p (the number of right-divisors) is 2, if m is prime to
24, for the quaternions arising from 27 — 2xx; + 23 + 3 (having A = 3), or
from 2z + 223 + 22 (having A = 4). But p = 4 if m is prime to 2\ (and the
divisors are ¢ and --4f) in the cases of Azf + 23 + 23 (A = 2 or 3), for which the
multiplication table is
(31) 'Lf = —1, 'L% = ’L: = —-7\, '1:1'1:2 = 1,.3 = —-1:2'1:1,

3l = 13 = —’ilia, Tal3 = Nl:l = —13%s.

For ordinary quaternions (A = 1), p = 8 as stated in the introduction.

If there is more than one class in the genus, as for A = 5, when there are at
least the two classes represented by

zs + @ + 5x; + 53, 225 — 2moms + 3u} 4+ 223 — 2mems + 323,

we may replace the requirement Nt = p, in connection with (22), by Nt = 2p
(or kp) and deduce that 2v has right-divisors of norm 2p (or a like theorem).

We mention one type of application. The general solution of hm® = D Aagvavs
may be obtained by observing that the pure quaternion v = 4w + 7002 + %05
has its left-divisors the conjugates of its right-divisors, whence v = #wt, where w
is pure and of norm %, and Nt = m. For a given h all solutions w of Nw = h
can be written down.

7. B. W. Jones and G. Pall” have used the results for A = 1, 2, and 3 above in
proving certain “automorphisms’ among the representations of numbers 8z + 1
or 24n + lin Az} + a3 + #3. E. Rosenthall and C. Solin employ these results
in McGill University theses together with that for f = 22} — 222, + 213 + 23 to
obtain an arithmetical proof of Glaisher’s" result for 4(4n + 1) = 2z} + z3 + 23,
and of new automorphisms for 24n + 1 = f, 24n + 1 = 3z} + 3xz + =3, and
2(24n 4+ 1) = 32} + 77 + 3.

McGiLL UNIVERSITY.

13 B, W. Jones and G. Pall, to appear in Acta Mathematica.
1 J. W. L. Glaisher, Quart. Jour. Math., vol. 20(1884), p. 84.



