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1. Notations. References followed by Q refer to an associated article.! We

use the notations of §1Q. In addition to the sets Q, €, It there defined, we
employ German capitals for the following sets:

2: the 48 automorphs obtained from any one by shuffling rows;

9%: all automorphs obtained from a given one by shuffling rows and shuffling

columns;
@: the pure quaternion residues (mod m) obtained from a set M by shuffling

U1, V2, Us;
R: all pure quaternions obtained from a pure one z by shuffling z:, 2, Zs .
Here shuflling denotes “permuting and changing signs of.” In §3, letters which
elsewhere represent integers denote real numbers.

We shall establish a one-to-one-to-one interconnection between the rational
automorphs of 2 + 3 + 73 and certain sets of solutions of (1,Q) and (1:Q).
Numerous arithmetical properties of the automorphs and some additional
properties of quaternions are obtained.

2. The rational automorphs of 7t + 22 4 zi are the matrices
® A = (aes/m)
(¢, 8=1,2,3;gcd (au, 01z, -+~ , 03, m) = 1;m > 0)
such that, if A* denotes the transpose matrix and I the identity,
2) A*A =1 = AA*, A* = A"
Here | A| = 6 = =1, and the relations (2) expand into the following:
(3) ;aaa=zﬂ:aﬂa=m, ;aaga-,g=0=zﬂ:a5,ag., if o #4,

4) the cofactor of each element a.g in (Gap) is 6mas .

If m could be even (3;) would imply that every a.s is even. Similarly no

prime factor 4f + 3 of m can divide any G -
TuroreEM 1. The denominator m of any automorph (1) is odd. Each row and

column of (a.p) satisfies

(5) i 4 2t + 22 = m,

1G. Psall, On the Arithmetic of Quaternions, Trans. Amer. Math. Scc., vol. 47 (1940),
pp. 487-500. This article was originally intended to precede the present article in these
Annals, but was transferred to the Transactions.
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(6) the g.c.d. of x1, 12, 3 being 1 or a product of primes 4f + 1.
Trivially, two x, tn (5) are even and one 18 odd. If m > 0,
) the even z,in (5) are = 04f m = 1, = 24f m = 3 (mod 4).

In §8Q we proved a generalization of the fact that
@) m=th+8i—ts—1ts, T=2—bts+btl), 2= 2kt + tt)

is the general solution of (5)-(6) with z; odd, ¢ being a proper quaternion of
norm m. For the purpose of proving (7), since any common factor of the
T, is = 1 (4), it will suffice to show that every proper solution of (5) with
odd is given by (8) for a proper t. Since x = %21 + 2%, + %3 is proper and
Nz = m®, z = vt with Nt = m by Theorem 1Q, Nv = m, v = {a with Na = 1
gince £ = —z has ¢t for a left divisor, whence z = {at; z; being odd and fat =
(Nt)a (mod 2), a = ==i;; the case @ = —i; reduces to @ = 4, , since #(—#)t =
Wiy if ¢ = tou. Expanding z = Iif gives us (8). Finally, (7) follows on con-
sidering (8) with one or three of the ¢; odd.
An automorph will be called odd if

9) | A| =1, and @y, @2, 033 are odd.
A class ® contains four odd automorphs obtainable from each other by changing
signs of two rows.

3. The matrix function GQ(t) of a real quaternion ¢, defined by
b+ —ti—1ti 2—tbh+hut) 2t +at)

At +tts) G—H+GE—8& 22—ttt ht)
A—tot+tt) 2t +ht) L-H—-G+1G
is considered in this section. By the homogeneity,

(11) G(\) = Q(?) for any real number A = 0.

1

(10) Q@ = i

If a matrix B = (bag) is of the form ((£) for some real quaternion ¢, then ¢is
unique up to a factor A. For by choice of A we can suppose Nt to have any
value m > 0. Equating (10) to (bas) = (a.s/m) we get the ten equations

(12) 45 = m 4 an + a2 + @, A =m+ an — G2 — Usz, -+ -,
(13) 4loty = G32 — Ous, 4bt; = Q3 + G52, -+ -,

which determine ¢,4,(f, g = 0, 1, 2, 3) and hence an unique 2.

If further m and the bg are rational, every ¢ and ¢/, is rational; t; = um(f =
0, 1, 2, 3) withrational u, and n, B = GQ(u). Choice of a factor A makes u proper.
Hence we have

Lemma 1. If @ matriz B with rational elements is of the form ((u) for some real
quaternion u, then there are two and only two proper integral quaternions, t and —t,
such that G(f) = B.
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The matrix %(¢) has the multiplicative property
(14) Q@) -Qu) = Qtu).
This can be verified as follows. Let = denote either the
(15) pure quaternion 44z, + ta%; + %s%s, or matrix (z.) of one column;

gimilarly for y. The columns of N#R(t) are tisf (@ = 1,2,3). Hence NiA(t)z
corresponds t0 3, Zatid = t(3 T.ia)l = taf, that is, if A = @(f) the matrix
equation

(16) ' Az =y
corresponds to the quaternion equation
17) tzf = my, where m = Nt.

Hence (14) follows when we observe that for arbitrary z and y,
t(uza)l/(NuNt) = y is equivalent to (tu)z(tu)/N(tu) = y,
Qt)A(u)xr = y is equivalent to  Q(tu)zr = y.

For any non-zero real quaternion ¢, @(¢) is a réal automorph of zi + z2 + z3 ;
for by taking norms in (17), Nz = Ny. Also|Q(¢)|is +1, and not —1, for
every {, since by continuous transformation of ¢ we can reach { = =1 when
@Q(t) is the identity matrix. It is worth noting the following identity in the
Zq and {; , the expressions in the matrix of (10) being substituted for the a.s :

E+R+ DG+ 6+ 8 = 2 (Gas + tans + caz)

We now prove conversely that every real automorph of zt + 23 + x5, with
determinant +1, is of the form Q(f) for real £; and it will follow from lemma. 1 that
every rational automorph is of that form for proper &.

It suffices to prove that if m > 0 and (3)-(4) hold with # = 1, the ten equations
(12)-(13) are solvable in real ;. By (3,) and (4),

(18) a3 — G = Gia — an = a5 — 63 (= ¢, say),
(19) My = Guln — Gudss,  MOn = Gi0s2 — OG1alas, ete. cyclically.

Thus Gi2 = =0z implies ax0s = -==a18s2 With the same sign; and similarly on
permuting subscripts cyclically. Hence, if ¢ = 0:

a) we can set Gz = m0s: etc., each 7o = =1, myans = 1;

b) if @z, as; , or ay; vanishes, at least two of them vanish.

Cask I, € = 0, at least two of @3, Gz1 , 012 2610; 88y @51 8nd @12 Then a2 =
sa;s. For the + sign, (3) and | A | > 0 imply as3 = —an, an = —m; take
fh=ti = 0,2 = au, f§ + § = m; then &3: = m’ — a3, = (& — £)°, and by
permuting t2, s, @22 = &; — t3. The rest of (12)—(13) follows. If azs = —as,
s = {3 = 0 yields a similar result. , ’
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Case I, £ = 0, n0 aes = O(ax ~ B). According to the cases
Om=m=m=1 Dp=pn=—1, Yup=mn=—1, HIn=12= -1,
we take &, &1, ta, Or #3 to be zero. Three of equations (13) become trivial, the
rest determine an unique ==¢, and imply respectively: 0) 2§ = anai/as, - - ;
1) 265 = anous/0ss, 26 = 010as/as, 265 = anas/ay ; and similarly in cases 2)
and 3). Equations (12) now follow. For example in case 0), by (4) and (3),
an(m + 3 Goa) = auon + 0102 + G1a(m + 0as) = arnan + ar0n + anaz = 0
= 463012, Gn(m + Gy — G2 — Ga) = OmOs — O2slaz — Gnalys = 20m0y = 4fian
etc. In case 1), z; = a5, a3y = —ays, and @2 = —as,, whence for example,
au(m2+ 2 Gaa) = Q1 + 2022 + Q2303 = — Onsr + Gas0s + Gaszs = —20210m
= 403 . A

CaseIIl, € ¢ 0. Then all of (13) are implied by the conditions 164htst; = €,
44ls = Gas + a3z, 45 = an + au, 4hts = @2 + axn, which determine ¢
uniquely. Also (12) follow. For example by (19),

(@12 + az)(m + an + a2z + az) = a10s2 + 01023 + anan + G1302s + 21093 001
= (Gs2 — @z)(a1s — an) = 4f5(an + an) by (13).

4. TareorEM 2. A rational automorph A = (a.p/m) of denominator m and
determinant +1 18 of the form Q(t) for an unique pair of proper quaternions t;
Ntism, 2m, or 4m according as A contains three, one, or no 0dd @« .

The first part follows from §3. If in (10) the denominator reduces to m,
Nt = km for some integer k dividing all nine elements of the matrix Nu3(f).
Since ¢ is proper and obvious combinations of the diagonal elements with Nt
produce 44(f = 0,1,2,8), h = 1,2, or 4. Conversely if ¢ is proper and Nt is
m, 2m, or 4m (m odd), the denominator to which Q(f) reduces is indeed m; for
any prime dividing m and the three diagonal terms divides each ¢;. The
possible parities of the ¢ in each case show that three a,, are odd if Nt = m,
one is odd if N2 = 2m, and all even if Nt = 4m, every ¢; odd.

THEOREM 3.  Let u be proper, modd. If Nu = 2m, Q(u) can be derived from an
odd A by interchanging two rows and changing the signs of one row. If Nu = 4m,
(X(u) i3 obtainable from an odd A by permuting the rows cyclically.

For if 2 | Nu, the u; are congruent (mod 2) in pairs. Hence u = (1 + z.)¢
with tintegral, « = 1,2, or 3; Nt = }Nu, Q(u) = Q(1 + i,)Q(t); and

1 0 O
A1+4)={0 0 -1
01 O

The case Nu = 4m is solved by two applications of this process, and

LemMA 2. The three automorphs obtained from Q(t) by changing the signs of
two of its rows are R(4if), Q(3at), Aast).

The four odd automorphs of a class £ (end §2) are, in view of Theorem 2 and
lemma 2, associated with an unique set Q (§1Q).
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We denote the set of quaternions conjugate to those of @ by €*; the set of
automorphs transpose to those of % by A*. Thus & = € if and only if

(20) an equality occurs among t; , 3 , & , 83 , 0.

THEOREM 4. As i ranges orer a set € (or Q) of odd norm m, Q(t) ranges twice,
as Q(t) = Q(—1), over the odd automorphs of a set A(or R) of denominator m. If
A corresponds in this way to €, A* corresponds to E*,

The proof for O and { was given above. We can restrict ¢ to one value in
every subset Q of §, say that given in lemma 13Q. By forming the automorphs
Q(n), for n in (15Q), we find that Q(ntg) = Q(n)A(H)A(s) is obtained by the
following respective operations:

@1) identity, oa, OapiTatlet2; GattTailat?, Tatlat?, OaFailat?;

23, Wi0a, W, Tmde; (a=1,2 3).
Here the subscripts are to be reduced (mod 3) to 1, 2, 3; o, denotes the operation
of changing the sign of the a-th row, then of the a-th column; =.s indicates
the interchange of the a-th and 8-th rows, then of the a-th and g-th columns;
m12s Tepresents a cyclic permutation of rows, and then columns.

If an odd A’ is derived by shuffling (§1) rows, and columns, from an odd A4,
any rearrangement of rows must be accompanied by the same rearrangement of
columns, and since | A | > 0, the number of sign-changes must be even. All
such possibilities, except for sign-changes of two rows, which are provided
for in the f-classes, are expressed in (21). Theorem 4 follows, the last part
being obvious from (10): @@) = @*(2).

It may be observed from the last part of §3 that some ¢; vanishes if and only if
e = 0, and that then 4 becomes symmetric on changing signs of certain rows.
From (10) we see that if {, = ¢,, then a = az, @51 = @23, @13 = a2, and 4
becomes symmetric on interchanging the last two rows; and similarly if any
equality oecurs among &, &, 5, #3, 0. Conversely, by (10), if an = a2, then
& = & ;if ais = as1, then & = —& or £, = t; ; the possibility @iy = ==as; implies
(to & 1)’ = (& = &;)° and is excluded by residues (mod 2) if Ntis odd. Thus we
have two theorems:

TurorEM 5. If some two elements not in the same row or column of A are
numerically equal, then the class ® of A contains a symmetric automorph.

THEOREM 6. A class N contains a symmetric automorph if and only if two of
6,8, 6,6 ,0 are equal in the corresponding proper €.

6. In view of the equivalence of (16) and (17), the identities
it —t)l=(0—tNt, tid+ )l = (tia + to)N,

give us the lemma and corollary:

LemMaA 3. On multiplying by Q(f) on the left, the column vector (4, t2, ts)
becomes (t, b, ts), (to, —ts, ta) becomes (is, s, —ts), (s, b, — 1) becomes (—15,
b, tl): ('—tl yh, tﬂ) becomes (t! y —h, 10)
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CoroLrArY 1. If Q(t) = (a.s/Nt) in (10), then

Zﬁ)a.pyp = 0(mod N?) (a = 1, 2, 3) for each of (y1, ¥2, ¥3)
(22)
= (tly t’: ta), (to, —b, t’)’ (tS, tﬂ: —tl)r (—t'h tl: fo)-

In fact (22) gives the identities in the proof of Theorem 5'Q. Hence
CorortARY 2. Ifp" | Ntand p [ & + . , the four congruences

Uglo — Wity — Usly — sty = 0, Ul + wily + usls — usty = 0,

(23)
Uty — wls + sty + ushh = 0, Uts + wile — ush + uslo = 0,

obtained on expanding ut = 0 (mod p"), can be expressed as linear combinations of
(23) and (23441).

8. TeEoREM 7. For any automorph (1) we can choose pure quaternions u and v
such that

(24) Gas = Uup (mod m), af=123
Here u and v must satisfy
(25) Nu = Nv = 0, u and » proper (mod m).

Also, u and v are uniquely determined (mod m) except that we can replace (u, v)
by (eu, fv), where e, f are any integers such that ef = 1 (mod m).

By the Chinese Remainder Theorem it suffices to determine % and v (mod
p"), for each p” dividing m. Some .5 is prime to p,2 say a;, . Then let u; = 1,
v3 = ayg, and determine u; and us from az; = ws011 , G = usan ; (24) holds for
every a and g, since by (4) every minor determinant of order 2 in (a4p) is divisible
by .

Since m, @y , @12, - - - , Q33 are coprime, % and v must be proper; this with (3,)
implies that m | Nu and Nv.

If u.vs = uLys (mod m), (a, B = 1, 2, 3), we can find integers r. , 85 such that
> ratte=1= ss(mod m). Sete = Z s, f = D raie. Then u, =
D Ualpss = D Ustsss = euy, v = fvg, and ef = D, 8v5 ) Talkha =
3D Tasguaty = D, 3. TaSglats = 1 (mod m).

If B = (bas/n) is an automorph of denominator n, and m | n, we write

(26) B ~ v (mod m)

to indicate that the three rows of (b.s) belong to the set M (mod m) determined
by ». By (24), A ~ vand A* ~ u (mod m). Since u is proper (mod m) the
set M (mod m) containing all three rows of mA4 is evidently unique.

2 Examples with no a,g prime to m may appear when m has three prime factors 4f + 1.
If m = 5-13-17, v = 775i; + 51i; 4+ 5337, is effective for A@), t = 28 + 114, + 106z + 107;;
likewise for ¢ = 24 + 22i;, -+ 84, + 343, every a,s is divisible by 5, 13, or 17.
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LemMa 4.  If v 13 pure and proper (mod m), and m | Nv, we can secure
@7 m* | Nv

by adding multiples of m to vy and va .

Set Nv = sm, w = hiy + kiz. Then N(v + mw) = m(s + 2k, 4 2kv.) +
(h* + k)m?, and we can choose h and k to make m | s + 2hvy + 2kva, since
v1, V3 , M are coprime.

LemMa 5. If (24) holds for the automorph (1), and m® | Nv, the integers hag
defined by a.s = uqvs + mhag satisfy

(28) 3 hegtp = 0 (mod m), « = 1, 2, 3.
For on substituting a.s = u.vs + mhesin (3) and using (27) we get
(29) cmiug 3o havs,  m|uy 2 Rasts + Ua D hagvs .

Multiply the latter by u, . Since m, u. , u* are coprime, (28) follows.
COROLLARY 3. With the same hypotheses, m” | ), Gagts .
Lemma 6.  If v i8 pure and proper, and Nv 1s odd,

(30) G@) ~ v (mod Nv).

For ((v) is then of denominator Nv; (30) follows from (10) with ¢ replaced by
v, 00 = 0: @os = 20,05 (mod m).
We note here the similar fact that for proper ¢ of odd norm,

(30') lf h = t: , (i’(t) ~ 2t1'i1 + (iz - ta)'l:z + (lz + t;)‘i; (mod N t);

two like results being obtained by permuting subseripts 1, 2, 3 cyclically.

CoroLLARY 4. The preceding remarks furnish quickly a value of v for any
symmetric automorph.

LemMa 7. If z is proper and Nz odd, end x = ut, Nt = m, then the rows of
NzQ(z) are in the set M (mod m) containing the rows of mA(t).

For by (14), NzQ(z) = Nu(u)-NiQ(f), whence the rows of Nz(i(z) are
linear combinations with integer coefficients of the rows of m(().

TuroreMm 8. Let v be pure and proper (mod m), m | Nv, t proper, Nt = m;
then

(31) Q(t) ~ v (mod m) +f and only if t is a right divisor of v.

By adding multiples of m to the », we make » actually proper and of odd norm;
then (30) holds. I. Let v = uf. By lemma 7, if Q(f) ~ z(m), Q) ~ z(m).
By (30), v and z are proportional (mod m), @(Y) ~ v(m). II. Conversely, let
Q(t) ~ v(m). By lemmas 4 and 1Q we can make m* | Nv. Set Q(f) = (aas/m),
Qo = Uabs + Mhggasinlernma 5. Letv = uy, Ny = m. We must show that
t and y are left-associates. By case I, Q(y) ~ »(m). Set Q(y) = (bos/m),
bas = Wabs + Mkas asinlemma 5. Then Q(tF) = AWAWY)* = (cay/m?), where

Car = 2 Gathyp = Uaty 2 05" + Mtta 23 kvpvp + my 3 hagtp + m" 35 hashig
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is divisible by m’. Hence ((¢7) has denominator 1, tj = my with Ny = 1,
t=ny.

In (24) if 4 is odd, and corresponds to ¢, the vectors u and » are, respectively
pure right and left multiples of {. By Theorem 3Q all left multiples (and
similarly all right multiples) are proportional (mod m). By Theorem 9Q, u
and » belong to the same set € if and only if (20) holds.

If A ~ v(m), and v’ is obtained by shuffling v, , vz, 3, and A’ is obtained by the
same shuffle of the columns of 4, then A’ ~ »' (m). Theorems 4, 7, 8, and 4Q
imply

TaeoreM 9. Every set T (mod m) contains all three rows (Xm) of the auto-
morphs in one and only one class  of denominator m, and conversely; likewise
for €and ¥.

We have thus, for any odd positive m, a one-to-one-to-one association between
seis &, M, O; and A, €, €.

7. TueoreM 10. Let z be proper and of odd norm m”, m | m”, A" = ((z).
The rows and columns of m"’ A’ are in the same set € (mod m) if and only if

(32) m divides one of x7 , x5 £ x,(f # g), To £ 21 £ T2 £ 2.

For set z = at, £ = b/, Nt = m = N¢. By Theorem 8Q, (32) holds if and
only if ¢ and ¢ are in the same set & The columns of ((x) being the rows of
Q(%), the theorem follows from lemma 7.

CoROLLARY 5. If mA is symmeirical (mod m), the class ® of A contains a
symmetrical automorph.

For the sets M containing the rows and columns of mA coincide.

8. Factorization of Automorphs. We call A a right divisor of A" if
(33) A" = A’A, and m”" = m'm holds for the denominators.

Then every automorph in the set £ of A is a right divisor of every automorph
in theset Rof A",

Lemma 8. If A is a right divisor of A, and t and t'’ are in the corresponding
sets 2 and 7, then L is a right divisor of t'’.

For we can suppose A and A" replaced by odd automorphs in their sets £,
and have (33) with A = G(f), A” = @(”). A product of odd automorphs
being obviously odd, we have A’ = A”A* = @("?) of denominator m’, whence
"I = M'/Nt' = m’. Bythenorms\ = = m. Hencei’ = =&t't.

LemMa 9. If z is proper (mod m), and s a right divisor of z of norm m, then
Q(t) s a right divisor of Q(z2).

For we can write z = Avy, where ) is an integer prime tom, Nv = 27, y proper,
Ny odd. Then @(z) is in the class ® of R(y) and is of denominator Ny. By
Cor. 1'Q,.the right divisors of y and z of norm m are the same. Hence y = uf,
Q(t) is a right divisor of @Q(y), hence of Q(2).

However, 4 need not be a right divisor of 4’4, for the denominator of A'A
may be less than m'm. By shuffing rows of 4, columns and rows of 4’, the
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problem is reduced to the case where 4’ and A are odd, say A’ = Q(u), 4 =
Q(¢). If utis proper, A is a right divisor of A’A. This is trivially the case if
m' and m are coprime (e.g. by lemma 9Q). We now have:

(a) The right divisors of denominator m of an automorph whose denomi-
nator is divisible by m, form an unique class 2.

(b) An automorph of denominator mmz - - - m, (each m, odd) can be expressed
in the form A’A” .-. A" where A is of denominator m,(» = 1, .., ), in
essentially only one way; the general such expression being

(A IKI*) (KIAIIKII*) (KIIAIHKIII*) ... (K(l—l)A (-)),

where the K are integral automorphs. That is, the K are matrices having
one element =1 in each row and column, the rest 0; whence KAK’ is in the class
A of A, and KA in the class &

(¢) If z is proper (mod m) and m | Nz, the right divisors of denominator m of

(2(z) and ((z + zm) are the same.

(d) If (33) holds, suppose A" ~ v (mod m'’). By lemma 7, A ~v (mod m).
Conversely, let A” be of denominator m"” = m'm, A” ~ v(m"), and let 4 ~
v(m). The right divisor of denominator m of A" being also ~ »(m), it is in the
class 2 of A. Hence A is a right divisor of 4”.

It may be worth noting that if (33) holds, m”A” = (uas) + m'"(hag), and
(m’)* | Nu and N, as in lemma 5, and we set

mA = (sqavp) + m(kas), ™M A" = (uars) + m'(lag),
then, as is easily seen by multiplying out m4 = mA’™*A”,
Sa = (1/m") 3 tylya (mod m), 15 = (1/m) 2 kgatrx (mod m’).

9. A natural application of automorphs is in transforming solutions of
(34) n+L+rn=n

into other solutions. We employ the double interpretation (15) for z, y. If
A = (@.s/m) the equation Az = y expands into

(35) ﬁZaapxp = MY, a=1,2,3.
We say that A is integrally effective on z, if z and Az are integral.

As A-ranges over a set €, Az ranges over a set & (§1) precisely 2/k times, where
k, called the weight of &, has the following values:

k=214 notwoof yi,ys, s, 0 are equal;
(36) = 1 4f there is only one equality among ¥i , ¥3 , 43 , 0;
= %) '.1«!’; '} resp. fOT the types (g: 9, 0)) (g: g, g)} (97 0, 0)

As A ranges over the four odd automorphs of a set £, Az ranges over a set
w1((23Q)). We can then use the notation (17).



RATIONAL AUTOMORPHS OF &3 + 3 -+ 23 763

TaeoreM 11. Let Nt = m, ¢ proper, m as always odd. Use the double notation
(15), z integral but not necessartly proper. Then Q(t) is integrally effective on z,
that s

(37) (txf)/m is integral,

if and only if L s a right-divisor of xo + x for some inleger z, .

Sufficiency. = + z = ut, tal = t(ut — zo)l = (tu — zo)m.

Necessity. Let @(t) ~ v(mod m). By Theorem 8, v = ut. By Theorem 7,
the condition that Q(f) be integrally effective on z is equivalent to

(38) it + 222 + 0323 = 0 (mod m).

Corollary 7Q completes the proof. In place of cor. 7Q we may use
Lemma 10. Let m not have a factor in common with two of v, v3, vs. Every
integral solution x of (38) is of the following form for certain integers wy , wy, ws :

(39) Z) = Wabs — Walz, Ty = Wsv; — Wil , 23 = ww; — wevy (mod m).

By the C. R. T. the proof reduces to modulus p". Let v, and »; be prime to p.
Solve waws — wyvz = 2,(p") for we and w; ; (38) becomes v3(zs + 1ws) = va(rrws —
) (mod p). Hence z; + v»w, = wyw. for a certain w; , amd ww; = viws — 2.

Set 2o = > Wav. . Thenz + z = wv = (wu)t (mod m).

TeeoreM 12. Let x be pure and proper (mod m). An automorph A of denomi-
nator m is integrally effective on z if and only if A is a right divisor of Q(zo -+ )
for some integer x, .

We can replace A by an odd automorph, A = Q(f), in its class €. If Az is
integral, 7o + x = ui for some zo , by Theorem 11. By lemma 9, ((t) is a right
divisor of @(zo + z). Conversely, if @(f) is a right divisor of ((zo + z), set
Zo + z = My as for lemma 9. Then Q(f) is a right divisor of @(y), ¥ = ut by
lemma 8, zo + z = (Avu)t. By Theorem 11, Q(Z) is integrally effective on .

By lemma 1Q and corollary 6Q we have

Lemma 11.  The R-classes of denominator m which are integrally effective on z in
Theorem 12, are different for incongruent values z, , and the same for congruent
values z, (mod m).

TaeoreM 13. Let x be pure and proper (mod m), Nz = n. The number of
sets R of denominator m which are integrally effective on z, is equal to the number of
solutions zo (mod m) of

(40) zt = —n (mod m).

For z; + z has an unique set £2 of right divisors of norm .

The number depends only on n and m, not on the particular proper z. If
m = p, (—n|p) = 1, the number is 2; if (—n | p) = —1, zero.

CoROLLARY 6. Let z be a proper pure qualernion of norm n, m odd and positive.
To each solution zq of (40) appertains uniquely:
(a) a set L of proper right divisors of norm m of o + z;
(b) a set Q of proper quaternions t of norm m satisfying tzf = 0 (mod m);
(c) a set M of pure quaternions v (mod m) all satisfying (38);



764 GORDON PALL

(d) a set { of automorphs of denominator m integrally effective on z.

Conversely each such set corresponds to one and only one xy(mod m). Hence the

number of such sets 18 in each case equal to the number of solutions of (40).
CoroLLARY 7. The two sets appertaining to zo and —zo (mod m) are in the

same €, €, €, A respectively if and only if (32) holds; hence certainly if two of

73, 73 , 73 , 0 are equal.

10. The degenerate cases, in which a set 9 contains less than 24 sets ¢ are
worth classifying. For any such case,

(40" v = k(& tw. =+ 10 + 13v,) (mod m)

for a choice of signs, permutation a, 8, ¥ of 1, 2, 3, and k prime to m.

If v = k(—v1, v2, v3) then since ged (v2,v3,m) = L,k=1,n=0. Ifv =
k(vi,vs, —vs) then vy = —k%;, 03 = —k’;, * + 1 = 0, k — 1 prime to m,
U 0. Similarly in all cases o, y Oat1Tadl,a42 5y Cat2Tatl,adl in (21), m l Va -
The only possible corresponding column of mA4 is by (3y), (=m, 0,0). By (3) an
automorph

m 0 0
(41) 0 ¢ flim
0 —f e

is contained in %. If ¢ is odd comparison with (10) givesm = & + &, ¢ =
ts — i1 ,f = 2t in coprime integers f , 4 .

Ifo = k(1 ,vs,02), 02 = k'vs , 05 = K’y , k* = 1; k + 1 is prime to m, for else a
primepwoulddividemandvl,vg + 0t =Nov— vf,ng,vz,vs k=10 = 1.
Similarly in all cases 7oi1,042, Caast.asz, N (21), Voy1 = +v.,2. We can take
the first two columns congruent (mod m), a;; = ¢ and az; = ¢ odd and positive,
the remaining @, and a.seven. If a3 = azp =k 2m, as2 = F m, and we have (41).
Henceas; = G, =€ —man=g—m;e + @ =ais+ g by (3,9 = e.
The two columns are (¢, e — m, f), (e — m, ¢, f), where by (32), f* = 2e(m — e).
The third column is determined by cofactors as in (4), and we find (42), where
m=1t6+2,e=10,f =2t

e e—m I
(42) e—m e f m, m = (2 —m)+ 2/
S f m — 2e
Ifo==Fk@,v,n),k =1;if v = k(—vs, v, ), k& = —1. In either case

eachv.isprimetom, 2 v =oi(1 + 5 + k), 1 + K £k =0,v, + v = v = 0.
Thus in the last eight cases (21), % contains an (Gas) With @ay + Gaz + @as = 0.
By the parities, Go1 + @2+ Gas = m, whence as Y, a’s = m’, Gar8as + Ca2@es +
Q.38 = 0. If (e, f, g) and (q, r, 8) are two rows, an easy elimination from
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ef +fg+ge=0=eq+ fr +gsand ge + 7f + sg = gr + rs + sq yields g/e =
r/f = s/g; which leads to (43) withm = & + 38 ,e = #§ — £, ete.:

e [ g
) lge f][m et+ftg=m E+f+g=m"
g e
The case m = 3 belongs to both the types (42) and (43):
-1 2 2
(44) 2 -1 2 }fs.
2 2 -1

THEOREM 14. The automorph sets characterized by (41)—(43) are the only ones
in which a set A contains less than the maximum number, 24, of sets R ; they are also
the only ones corresponding to sets & in which (cf. (20))

(45) two equalities occur among 5, 3, &3, & , 0;

also the only ones tn which two rows of (a.s) form, apart from shuffling of the z.,
the same solution of (5).

To prove the last part observe that distinct rows of (a.s) cannot have the same
divisor. Hence if two rows become identical after shuffling, their divisors are 1,
and asis evident from (24), (40’) holds non-trivially.

The number of sets £ contained in an ¥ is easily verified to be

(46) 4for (44), 6for(4l); ifm > 3,12for (42), 8 for (43).
The same proportions hold for sets Q in an €, and sets Min a €.

11. Let m be prime to the square part of n, 2, a solution of (40). The form
¢ = [m, 220, 1] of determinant —=, is primitive. A certain completeness is
obtained in treating simultaneously automorphs of denominator m appertaining
to xp or —Zo. Asin §6Q every [z] of norm 7 is carried by ¢ into a certain [y],
and by ¢’ = [m, —2z,, I] into a certain [2]. Here z, + z = ut, y = (tzf)/m =
tu — 20; =%+ =vw,z=ww + 2 ; Nt = Nw = m. Similarly, [y] and [2]
are each carried by ¢ and ¢’ into [z] and one other set | ] not necessarily new.
This chain of transformations eventually closes, and if it does not exhaust the
pure quaternions of norm 7, we can start a new chain with any z not already
included.

If 2’ is obtained from z by interchanges and sign-changes of the z,, then
according as the number of these changes is even or odd, z’ is carried into the
similarly formed [y'] and [2’] by ¢ and ¢/, or ¢’ and ¢; (cf. (16Q)). Thus an
entire set § = 8(z) is carried by odd automorphs in two sets % and ¥, appertain-
ing to 7o and — 1, , into two entire sets £; = K(y) and ®: = K(z). Here A =
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%, if (32) holds. Evidently if f is of weight 2, either £, = £:, or & = ®:and
is also of weight 2.

Sets £ of weights 3, §, 1 are carried into themselves. For example, Az is
integral for z = (g, g, 0) only if integral for (1, 1, 0).

Ifx =0, thenz = 412iy ; —20 + = = 2(z0 + z)02 = (Gu)(tr), () (hu) +
To=—(lu—2) = —y; &1 = K. Ifalsom|x,tand &; are in the same Q,
Q(?) is of type (41) and carries z into (0, ¥z, ¥s) of the same type.

If 2, = 73, then ¢’ = ty — 4ty — 4als — sty is a right divisor of —zo + z, G(¢')
differs from (®(f) mainly in having the last two columns interchanged, and again
£ = 8. If also m |z, t and ¢ are left-associates, ((¢) is of type (42) and
carries z into a veetor (¥, ¥z, & ¥2) of the same type.
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