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For tin [x, 1], x—¢<0;for tin [0, x], 1 —x+2=0. Also, there exists a
constant ¢>0 such that 1—e* sin p—e™ cos p=c¢ for p=p,. Call
M,=maxoy |ua(x)|, K=/3|MN¢)|dt. Then
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1 — 17K/ (4ce?)
Thus for # sufficiently great, M, §4+10/c. The remaining #'s form
a finite set. Hence #.(x) is uniformly bounded in #. Thus

U (%) = COS po& — Sin pa& + 7P (17%) sin p, — a7 + r4(2)/0%,

and cos p.=¢(pn), where lima..¢(p.) =0. Thus p.=(n+1/2)r+e,,
where lim, .. €.=0. It follows that
ua(x) = cos (n + 1/2)7x — sin (n + 1/2)7x
+ (= 1" exp {= (4 1/2)x(1 — x)}
—exp {— (n+ 1/2)wx} + ra(x)/n3.
The theorem for system V follows.
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AN ALMOST UNIVERSAL FORM
GORDON PALL

P. R. Halmos! obtained the 88 possible forms (a,b,¢,d),0<a=b
<c¢=d, which represent all positive integers with one exception, and
proved that property for all except for the form A=(1, 2, 7, 13). A
proof for k follows.

The forms f=(1, 2, 7) and g=(1, 1, 14) constitute the reduced
forms of a genus.? Between them they represent all positive integers
not of the form3 A=7%+(7m+3, 3, 6). The identities

5t 4 g2 + 1422 = 22 4 2((y + 72)/3)* + T((y — 22)/3)*
= 92 4+ 2((% + 72)/3)* + T((x — 22)/3)*

show that every number represented by g with either y=—3z or
x=—z (mod 3) is also represented by f. Hence every number 3n and
3n+1 not of the form A is represented by f. For, x=y=0, 2#0, and
x, y#0, 2=0 (mod 3) both imply g=2. If N=3n or 3n+1 is of the
form A, then 7l N, so that N—13-325A. Similarly, one of 3n+2—13
and 3n+2 —52 is not of the form A; but neither of these is congruent
to 2 (mod 3). These linear forms are positive if n=39; hrepresents
all integers not less than 119. The only number less than 119 not
represented in (1, 2, 7, 13) is found to be 5.
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1 This Bulletin, vol. 44 (1938), pp. 141-144.
% See any table of positive ternaries.

* For example, see B. W. Jones, Transactions of this Society, vol. 33 (1931}, pp.
111-124.
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