$$\left[-\frac{1}{4\rho^{3}} \int_{x}^{1} \lambda(t) u(t) e^{\rho(x-t)} dt - \frac{\sin \rho + \cos \rho}{4\rho^{3}} \int_{0}^{x} \lambda(t) u(t) e^{-\rho(1-x+t)} dt \right] \cdot \left\{ 1 - e^{-\rho} \sin \rho - e^{-\rho} \cos \rho \right\}^{-1}.$$

For t in [x, 1], $x-t \le 0$; for t in [0, x], $1-x+t \ge 0$. Also, there exists a constant c>0 such that $1-e^{-\rho}\sin\rho-e^{-\rho}\cos\rho\ge c$ for $\rho=\rho_n$. Call $M_n=\max_{\{0,1\}}|u_n(x)|$, $K=\int_0^1|\lambda(t)|dt$. Then

$$|u_n(x)| \le 2 + \frac{5}{c} + \frac{17M_nK}{4c\rho_n^3}, \qquad M_n \le 2 + \frac{5}{c} + \frac{17M_nK}{4c\rho_n^3},$$

$$M_n \le \frac{2 + 5/c}{1 - 17K/(4c\rho_n^3)}.$$

Thus for n sufficiently great, $M_n \le 4 + 10/c$. The remaining n's form a finite set. Hence $u_n(x)$ is uniformly bounded in n. Thus

$$u_n(x) = \cos \rho_n x - \sin \rho_n x + e^{-\rho_n(1-x)} \sin \rho_n - e^{-\rho_n x} + r_n(x)/\rho_n^3$$

and $\cos \rho_n = \phi(\rho_n)$, where $\lim_{n\to\infty} \phi(\rho_n) = 0$. Thus $\rho_n = (n+1/2)\pi + \epsilon_n$, where $\lim_{n\to\infty} \epsilon_n = 0$. It follows that

$$u_n(x) = \cos (n + 1/2)\pi x - \sin (n + 1/2)\pi x$$

$$+ (-1)^n \exp \left\{ -(n + 1/2)\pi (1 - x) \right\}$$

$$- \exp \left\{ -(n + 1/2)\pi x \right\} + r_n(x)/n^3.$$

The theorem for system V follows.

REFERENCES

- 1. C. M. Jensen, Some problems in the theory of interpolation by Sturm-Liouville functions, Transactions of this Society, vol. 29 (1927), pp. 54-79.
 - 2. Rayleigh, Theory of Sound, vol. 1, London, Macmillan, 1929, pp. 275-276.
- 3. Dunham Jackson, Theory of Approximation, American Mathematical Society Colloquium Publications, vol. 11, New York, 1930, p. 134.
- 4. Stekloff and Tamarkin, Problème des vibrations transversales d'une verge élastique homogène, Rendiconti del Circolo Matematico di Palermo, vol. 31 (1911), pp. 341-362.
- 5. J. D. Tamarkin, Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions, Mathematische Zeitschrift, vol. 27 (1927), pp. 1-54.

BROWN UNIVERSITY

Bulletin of the A. M.S. vol. 46 (1940)

AN ALMOST UNIVERSAL FORM

GORDON PALL

P. R. Halmos¹ obtained the 88 possible forms (a, b, c, d), $0 < a \le b \le c \le d$, which represent all positive integers with one exception, and proved that property for all except for the form h = (1, 2, 7, 13). A proof for h follows.

The forms f = (1, 2, 7) and g = (1, 1, 14) constitute the reduced forms of a genus.² Between them they represent all positive integers not of the form³ $\Lambda = 7^{2k+1}(7m+3, 5, 6)$. The identities

$$x^{2} + y^{2} + 14z^{2} = x^{2} + 2((y + 7z)/3)^{2} + 7((y - 2z)/3)^{2}$$
$$= y^{2} + 2((x + 7z)/3)^{2} + 7((x - 2z)/3)^{2}$$

show that every number represented by g with either $y \equiv -z$ or $x \equiv -z \pmod{3}$ is also represented by f. Hence every number 3n and 3n+1 not of the form Λ is represented by f. For, $x \equiv y \equiv 0$, $z \not\equiv 0$, and x, $y \not\equiv 0$, $z \equiv 0 \pmod{3}$ both imply $g \equiv 2$. If N = 3n or 3n+1 is of the form Λ , then $7 \mid N$, so that $N-13 \cdot 3^2 \not= \Lambda$. Similarly, one of 3n+2-13 and 3n+2-52 is not of the form Λ ; but neither of these is congruent to 2 (mod 3). These linear forms are positive if $n \geq 39$; h represents all integers not less than 119. The only number less than 119 not represented in (1, 2, 7, 13) is found to be 5.

McGill University

¹ This Bulletin, vol. 44 (1938), pp. 141-144.

² See any table of positive ternaries.

³ For example, see B. W. Jones, Transactions of this Society, vol. 33 (1931), pp. 111-124.