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1. Introduction. The theory of ternary quadratic forms is full of challenges that have
not yet been met. As yet there are not many theorems that apply to whole families of

forms. In this paper I present three theorems of this kind.

2. Forms that représent the same integers. In [3, p. 174] Jones and Pall stated
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without proof that x + 3y +2yz+4z and X+ y2'+ 4z*+ xy + xz represent the same
integers. Inow fit this in as the case r =4 in an infinite set of statements. For notational
simplicity I suppress the dependence of f and g onr.

_Theorem 1. For any integer r the forms f=x "+ 3y7"+ 2yz + rz* and

g= X+ yL +z+ Xy + Xz represent the same integers.

Remarks. 1. We can allow r to be negative or 0, thereby acquiring some information
on indefinite forms.

2. Forr =9, g is the first of the "near misses" listed in [4], that is, it seems to
represent all positive odd integers with exactly one exception. (In retrospect it might
have been better to call them candidates to be near misses.) Subsequently, in a search not
yet finished, I found three more candidates. Oné was f With r=9. So, although I still do not
know whether these two forms actually represent all positive odd integers with one
exception, at least I know that they will stand or fall together.

Here are the fifth and sixth candidates. The forms %+ 3y7’+ 327+ 2xy + yz and
2%+ 3yL+ 52%+ 2xy + 3yz both seem to represent all positive odd integers except 1.
In fact the first of these forms seems even to represent all integers represented by its genus

except the powers of 4 (including 1). %/ o4 J %MW e 2 43 in all

3. Theorem 1 leads one to wonder about other pairs that represent the same integers.
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They exist in an abundance that may make classification difficult. As a starter one gets many
pairs by inserting x4 3y1' and x~ + Xy + yﬂ'into ternary forms. However, the problem looks
more reasonable if restricted to diagonal forms (which might as well be primitive). In that
case 1 know of only two examples: the pair 1, 1, 1, and 1, 2, 2; and the pair 1, 1, 2 and

1, 2, 4. (I am using the notation a, b, c for the form ax7"+by1' + ¢z, and shall assume
a=b=c.) Ihbave two partial results which I shall state without proof. Suppose that

a, b, c and d, e, f represent the same integers. It is trivial that a = d. (i) Assumeb <e.

Then the forms are one of the two pairs listed above. (ii) Assume b=¢ =1. Then the

two forms are identical. I remark further that an inspection of the 102 primitive regular
diagonal forms presented on pages 112-113 of [2] reveals that there are no other primitive
diagonal pairs where both forms are regijlar.

Proof of Theorem 1. The method is standard and elementary. Suitable scalar multiples
of f and g are diagonalized and a bridge is built between them by using still another form:
h=x"+ 3y2'+ Qr- 1)z2. This calls for comparing three statements, where A is a given
positive integer: (a) frepresents A, (b) g represents A, (c) h represé\wts 3A.

(a) » (c). From {(x, y, z) = A we get
) =By +z) +3x + Gr-1)z =3A.

(b) > (c). From g(x, y, z) = A we get
) 12g = Bx +22) +3(x +2y) +(12r-4)z" = 12A.

Now it is known that if > + 3b_ = 4c then there exist d, e with d*+3e =c. By applying

>
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this to (/..] and dividi ig b_y 4 we get thathr preseiits 3A.

(c) = (a). We are given



3) w43 G- w = 3A
aqd our task is to find x, y, and z satisfying (1). From (3) we see that u”-w” is divisible
by 3. By changing the sign of w, if necessary, we arrange that u - w is divisible by 3.
Setx=v,y=(@u-w)3,z=w.

(c) - (b). Again we are given (3) and this time we need to reach (2). Again we
arrange to have u - w divisible by 3. Set x =2(u - w)/3 and z = w. Note that x is even and
sety=v-x/2.

3. Two families of regular forms. Recall that a form is r%lar if it represents all integers

represented by its genus.

Theorem 2. Suppose that k = X+ 3y7'+ sz xz + 3yz and

m=x + Xy + y7—+ (4s - 4)22 constitute a genus. Then k is regular.

Proof. Let A be an eligible integer (i. e., one represented by the genus). We must show
that k represents A, and we can assume that m represents A (for otherwise we see at once
that k represents A). Since the binary forms x “+ xy + yq— and x” + ?:y1 represent the same

. ) z 2 >
integers we can assume thatu + 3v + (4s - 4)w?'= A. Setx=u-w,y=v-w,z=2w.

Then k(x, y, z) = A. /,,,__.\
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Theorem 3. Suppose thatn=x +3y +tz +Xxz+yzand AN
¢

p= X+ y7'+ (4t’- l)z2 + Xy + Xz constitute a genus. Then n is regular.
Proof. The plan is the same. With B eligible we may assume that p represents B and
our task is to prove that n represents B. Now ) y
/,-*\\ .
12p= (3x +22) +3(x + 2y) + (482 16)2”. Lo A

So we have u, v, and w satisfying

@) u”+3v° + (48t - 16)w” = 12B.



2 o 2, L .
We repeat the "x™ + 3y7' " trick: since uz-q- 3v- is divisible by 4 there exist elements

¢ and dﬁvith uZ+3ve= 4(c “y 3d¢). After dividing (4) by 4 we have

. 2
////,?Hé +(12t- 4)w” =3B.
.C.
"Jof ' Next comes another repetition: ¢“-w” is divisible by 3 and we arrange thatc - w is

divisible by 3. Setx=d -w, y=(c-w)/3,z=2w. Thenn(x,y, z) =B.

In [4] three forms were proved to be regular: numbers 13, 15, and 19 in the list at the end
of that paper. These have been reprised here by the cases s = 3 of Theorem 2 and t=3, 5 of
Theorem 3, respectively. New regular forms are givenby s =5,7, 11,13, 19,3l andt=7,
according to the Brandt-Intrau table [1] Whether there are any more beyond the table seems
doubtful, /Mﬁ/ W Wﬂ ast 6l
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