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IK, May, 1994
Memo
More on ternary forms
I have now been looking at ternary forms for about a year and a half. I plan to put

them aside, at least for a while. To keep what I have from being scattered and/or forgotten,

I am assembling this memo. I will send out a few copies.

1. The form h = x2'+ 5y2+ 527+ 3xy +xz. In LQ it was proved that h represents all
odd numbers. The argument is easily extended to identify all numbers it represents.

I think it is a fair statement that very few non-regular forms are known for which there
is complete information on the numbers represented. I am glad to add one more.
The genus of h represents everything except 4§I6n + 14).

Theorem 1. hrepresents all eligible numbers except the odd powers of 2.

Proof. (a) Iattack first the non-representability of odd powers of 2.
Suppose that h(x, y, z) is even. Write t =y +z. Mod 2, h is x "+ xt + ¢ - which vanishes
only if x and t vanish. In other words, if h is even'theﬁ x is even and y and z have the same
_ parity. Note that in that case xand 3xy + xz = x(3y + z) are both divisible by 4, and
Syz + 52@5 2 (mod 4). Hence: if h(x, y, z) is divisible by 4 then x, y, and z are all even. This
reduces our problem to the non-representability of 2. It simplifies matters to diagonalize.
If h(x, y, z) = 2 then
(1) 20h(x, y, z):(lOy+3x)L+(lOz+x)L+ 10x~ = 40.
As noted, x must be even. Then (1) shows that x = 0 or 2. Both possibilities are easily ruled
out by inspection. |

(b) Let A be an eligible number (i. €., not of the form 4#’?16n + 14)) which is not an odd
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power of 2. It is to be shown that h represents A. I ask the reader to examine the proof

in [4 and confirm that it works provided 2A is not a square and A is not divisible by 25.
Write A = rZB with B square-free. Eligibility of A implies eligibility of B. We will be
finished by induction unless B = 2. Furthermore, induction can again be applied unless r = 5.

It remains to represent 50 and here it isjtake x =0,y =3,z = I.
2 2.
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2. The formk=x +3y +5z + xy+yz. This form is one of the potential "near misses"

of [4]; it seems to represent all odd numbers except 17. In [4] some facts about odd numbers
represented by k were stated without proof. Here I shall supply proofs and extend the
results to even numbers.

I begin by noting that the integers missed by the genus of k are 4ﬁzl6n + 10); these are
the same as those missed by xF+ 2y2+ 37

Theorem 2. k represents every eligible number which is congruent to 0 or 1 mod 3.

Theorem 3. Let A be an eligible number which is congruent to 2 mod 3. Then k
represents A if and only if A admits a representation by xl+ 2y l+ 3z Zwith z prime to 3.

The following remarks apply to the prooi;s of bofh theorems.

We make a change of variable, replacing z by z - x and then changing the sign of x. This
yields 6x&+ 3y2+ 5z ?f+ 10xz + yz. We shall abuse notation and still call this form k. We
have:

) 12k = (6y +2) +2(6x +52) +92°

Let A be an eligible number. Then (2) shows that k represents A if and only if 12A can be
written u 2+ 2vZ +9w’ with u, v, and w congruent mod 6. Now if u14- v + 9w’ is divisible
by 4 then u, v, and w have the same parity. For, firstly u and w must have the same parity.

If they are even, then v must be even. If they are odd, then u W—f9wz =2 (mod 4) whence v




must be odd. Thus our task simplifies to writing 12A = ul+ 2v+ 9w with u, v, and w
congruent mod 3. Of course, it is equally good to achieve 3A = u}+ 2v 7_+ 9w2,with u, v, and w
congruent mod 3 (just multiply by 4).

Here is the general plan. Given an eligible A we begin by writing it as
A=r +25°+ 3t1. Multiply by 3 and absorb the factor 3 inr ¢ Zsz, to reach
3A=u ﬁL+ v+ 9w qf If u, v, and w are congruent mod 3, there is success. If not, we try to
change them so as to achieve this, something which will not always be possible.

Proof of Theorem 2. . A=0(mod3). InA=r"+2s+3t,,r ‘ands are
congruent mod 3. We write
3) 37+ 285 =(r £25) +2( T5) =u+2v .
Subcase (a): t =0 (mod 3). If r and s are divisible by 3, all is well. If not, by making the
right choice of sign in (3) we arrange that u and v are divisible by 3. Subcase (b):
t prime to 3. We dispose first of the possibility r =s = 0. Then

12A=360 = (50  + 2t 40t~

achieves our goal. So we may assume that r 257 #0. By Lemma 3 of [4] we can rewrite
< 3(r "4 252) as p7—+ qu with p and q both prime to 3. Now 3A = p2+2q2+ 9t~ with
D, q, and t all prime to 3. By changing signs, if necessary, we make them congruent mod 3.

II. A=1(mod 3). InA=r *+2s” + 3t it has to be the case thatr is prime to 3 and s
is divisible by 3. Subcase (a): t prime to 3. On the right side of (3),.u and v are prime to 3
no matter which sign we pick. Subcase (b): t=0 (mod 3). This subcase calls for a
different strategy. We first multiply A = 42T + 3tLby 4 and use
(4) 4’ +30) = ©30 +3@ 5 O

Note that r must be prime to 3 and s divisible by 3. - The teans on the right of (4) are prime to 3
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and we have 4A = pl+ 25L+ 3q7—with p and q prime to 3 and s divisible by 3. Now we
multiply by 3 and again use (3), with p and q replacing r and s. With either choice of sign
we get u and v prime to 3. This concludes the proof of Theorem 2.

Proof of Theorem 3. I. We are given an eligible A and an expression A = F 42574+ 3%
with t prime to 3. From A =2 (mod 3) we deduce that r is divisible by 3 and s is prime to 3,
When we use (3) we get u and v prime to 3, just what is needed.

II. We are given A =2 (mod 3) and 12A =u 2'+2v Y ow Q,With u, v, and w congruent
mod 3; our task is to work back to a representation A = x 4 2y 7’+ 3z “with z prime to 3.

We have u = v}(mod 3). Since 12A is not divisible by 9 we cannot have u and v divisible
by 3; thus u and v are prime to 3 and so is w. One knows that (u1+ 2v7/)/3 is expressible as

p i 2qZ. Then 4A = pz+ 2q1+ 3w? Note that 4A =2, p7’.=. Oorl,2q “=0or 2, all mod 3.
It follows that p is divisible by 3 and q is prime to 3. Another consequence is that

P+ 3w’ is exactly divisible by 3. The usual parity argument shows that q is even and that

p *+ 3w “is divisible by 4. One knows that (p’l+ 3w2)/4 can be wrtten a” + 3b . Here

a™+ 3b” inherits the property of being exactly divisible by 3, from which it follows that

b is prime to 3. The representation A = a® +1q/2)1’ + 3b yachieves our goal and concludes the
proof of Theorem 3.

As reported in [5], up to 16,383 the only exceptional odd integer that occurs in
Theorem 3 is 17. As for even integers = 2 (mod 4) the exceptional eligible integers that 5‘9
showed up in a hand computation up to 2,000 were 2, 38, and 482. (Confession: in the
past such hand computations were not too reliable.) At any rate, I will now ask the first of

several questions. (Please note: these are questions, not conjectures.)
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Question 1. Does k represent all eligible integers except 4 (2, 17, 38, and 482)?
Alternatively, are these the only eligible integers whose representations by x2+ 2y2+ 325

all have z divisible by 3?

3. Partial results on two more forms‘i_g' [5]. With a big assist from Gordon Pall [7] I

+-
obtain partial resu/l\s on two forms that arose in [5].
2 2z 2z . . . .

The form f=x +2y +5z + xz + 2yz is one of the near misses in [5]: it ,a,\%ms to
represent all odd numbers except 13 and does so for sure up to 16,383. The numbers
4'2(1611 + 14) are the ones excluded by its genus.

Theorem 4. f represents all eligible numbers congruent to 0 or 2 (mod 3).

Proof. We have

M=(2x+2) +22y+7) + 1Ty
2 {
Ifthe formd=u +2v~ + w;is a multiple of 4 then u, v, and w have the same parity. It
N N

Wruféﬂ(_

follows that f represents A if and only if d represents 4A. Now Pall [7, 56] that d represents
N

all eligible numbers congruent to 0 or 2 (mod 6). It therefore represents all eligible numbers

congruent to 0 or 8 {mod 12). Dividing by 4 proves the theorem.

An exploratory computation leads me to ask:

4z

Question 2. Does f represent all eligible numbers except 4 (10 or 13)?

The form g = x=+ 2y g 52 + xz is the first of the four unsettled candidates in [5] for
representing all odd numbers. The numbers 4’%1611 + 10) are the ones excluded by its genus..
Theorem 5. g represents all eligible numbers congruent to 0 or +2 (mod 5).
Proof. The proof follows the same pattern. We have
4g = (2x + z)L + 8y7'+ 192"

If the forme=u"+2v" + 19w”is a multiple of 4 then u and w have the same parityfmd vis

B
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even. It follows that g represents A if and only if e represents 4A. Now Pall [7, p. 57] @
proved that e represents all eligible numbers congruent to O or +2 (mod 10). It therefore

represents all eligible numbers congruent to 0 or 8 (mod 20). Dividing by 4 proves the

theorem.

The eligible even numbers not represented by g ar&Ws. 4 4 f\/g/}?

4. A fourth near miss. I began a systematic search for near misses. This requires a good

—

deal of computation and I have put it aside for a while. A fourth possible near miss emerged:

2 ve
b=x+ 3y2+ 2yz + 9z~ To help with computations (and perhaps to help in future proofs) Cueh

here is a diagonalization. @
Theorem 6. b represents A if and only if ¢ = u +3v + 26w7’represents 3A.
Proof. We have
3b=3x"+ By +2z) +262°
If ¢ is divisible by 3 then u *and w” are congruent mod 3. Byf:hanging a sign we can make
u and w themselves congruent mod 3 This enables us to work back from c to b.
For quite a ways up b represénts all odd numbers except 5. The eligible integers not
represented by b which are even but not divisible by 4 start as follows: 2, 46, 62, 122. Perhaps

they die at this point.

5. Even forms with small discriminant. The idea behind this investigation is the hope

that patterns will emerge that will suggest conjectures that may some day be theorems.
[ have become used to calling a form even if its cross product coefficients are even, odd

otherwise. I realize that nobody else is using this terminology.
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In [4] and [6] I carried the theory of even forms as far as I éould for discriminant < 10

and began looking at discriminant 11. I now continue.

Discriminant 11. There are some points of similarity between the even forms of

discriminant 7 and those of discriminant 11.
(a) In each case there are three forms falling into two genera. The genera with just one
form do not concern us any further. Here are the genera with two forms:
Discriminant 7: f= XL+ yz'f 7z 7? g= x+ 2y2+ 2yz +4z ‘
Discriminant 11: h=x"+y + 112", k= X+ 3y +2yz + 427
(b) This point concerns representing eligible numbers of the form 4n or 4n + 1. Gordon
Pall stated without proof that f and g both represent all eligible 4n’s and (4n + 1)’s; Dennis
Estes supplied a proof that was incorporated in [6]. But the resemblance is imperfect,
working for only three out of the four statements.
Theorem 7. k represents all eligible 4n”s-and (4n + 1)’s. y
Proof. Let A be an eligible number congruent to O or 1 mod 4. If h does not represent A
" then k does. So we may assume that h represents A, say A = urv 1 lwn}('\'e now use
the identity
u v I LiwZ= 0" 4 30w) + 22w [(v - w)2] + 4[(v - w)2]
If v and w have the same parity we get an integral representation of A by k. By symmetry it is
equally good for u and w to have the same parity. So we are defeated only if u, v are odd and

w even, in which case A =2 (mod 4), or u, v are even and w odd, in which case A =3 (mod 4).

Theorem 8. h represents all eligible 4n’s. : @
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Proof. The plan is similar but the identity is different. Let B be an eligible multiple of 4,
B =4C. The number C is again eligible. If h represents C, all is well. So we can assume-
that k represents C, say C = u2+ 3vi e 2vw + 4w2. Now we have

B=4C= Q™+ (v+4w) +1lv?

a representation of B by b

The fourth of the statements under scrutiny is false: 33 is an eligible number of the
form 4n + 1 but h does not represent it. One example is enough to sink a theorem but here are
three more: 11.67, 11.235, and 11.427. Yes, these are all multiples of 11.

Question 3. Does h = X+ y %11z 1'rc:present all (4n + 1)’s prime to 11?7 @

If my computation stands up, this is true up to 2,000. }

(c) Each of these genera has a close connection to a genus with a different discriminant:
f and g with an even genus of discriminant 14 (see below%fh and k with an odd genus of
discriminant 22 (see under odd discriminants).

(d) In both cases the non-diagonal form seems to come much closer to regularity than
the diagonal one. (This also seems to be true for the tWo form genus of even
discriminant 10.) I shall spell out some details.

(i) List IT in [4] presents 26 numbers prime to 7 not represented by x+ y“+7z" , the
largest being 4759; there are no more up to 100,000. Up to 700 there are 20. For
X+ y 2+ 1z Z, [ have found 43 numbers prime to 11 up to 700 not represented. (This list is
probably not quite accurate, and so I am not publicizing it.) So h is running ahead of f, better
than two to one.

(i1) According to list IIT of (4], adjusted so as to apply to g = x“+ 2y % 2yz + 4z “ the

only non-represented numbers prime to 7 and less than 50,000 are 10 and 79. For

9{/5&-%47/ ates Z’o iy aold gemats ‘f ;{L&«L%LWM X
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k=x +3y +2yz+4z,]present a question.

Question 4. Does k represent all numbers prime to 11 except 2?

My computation says that this is true up to 667. This was a%%e by running
X+ 3y7’+ llzvup to 2,001, based on an easy statement which I shall call a theorem.
Theorem 9. x *+ 3y1+ 2yz+4z Zrepresents A if and only if x* + 3y* + 112™
represents 3A.
Proof. The method is the usual one, based on the identity
3(x +3y +2yz+4z7 ) =3x"+ Gy +2z) +1lz".

One notes that if u”+3v~ + 11w’is a multiple of 3, then u”= w ~(mod 3), and a change of

sign, if necessary, can make u = w (mod 3).
(iii) To discuss representations of multiples of 7 (resp. 11) I prefer to make an

appropriate switch of forms.

According to list IV of [4] the numbers 2, 74, and 506 are the only ones up to 100,000
which are prime to 77 squares mod 7, and not represented by x* + 7y7'+ 142, The
corresponding investigation has suggested the following question.

Question 5. Are 3 and 174 the only numbers which are multiples of 3, prime to 11,
squares mod f!, and not represented by X+ 1 1y2+ 33277

My computation says that this is true up to 2,007.

Discriminant 12. The even forms of discriminant 12 are all alone in their genera.

Before proceeding further, [ make a remark on regular even forms of discriminant < 20.

In Jones’s thesis (2], in addition to his well known list of 102 primitive regular diagonal

pririlind

forms, he presented (among other things) a list of all even/\regular non-diagonal forms of

discriminant < 20. The two lists combine to show that there is only one even regular form




. exception 721 sticking out like a sore thumb in a seg.of 500 represented numbers.

(10)

of discriminant < 20 lying in a genus with more than one form: X"+ y %+ 16z” Ibelieve that
to this day it is difficult to prove that this form is regular.

Discriminant 13. There are four even forms of discriminant 13 and they comprise two
genera containing two forms each. All four forms are non-regular (this is covered by the
remark just made).

At present [ have examined only xL-Iﬁr *+13z% Ihave proved nothing and will only 1 3
ask a four part question.

First I note that if x™+ y + 132~ is divisible by 4, then x, y, and z are all even.

therefore confine our considerations to odd number and doubles of odd numbers./ I found it
convenient to divide the work into four cases.

rQuestion 6. (a) Does x l+ y 13z 2represent all (4n + 1)’s except 7217 (b) Does it
represent all (8n +2)’s? (c) Does it represent all (8n + 6)’s except 6 and 467 (d) Does it
represent all (8n + 7)’s except 7, 55, 79, 271, and 4397

All four computations went up to 2,000. I found it a little startling to see the

Discriminant 14. There are three even forms of discriminant 14, including the genus

consisting of x ‘4 y “+ 14z “and x~ + 2y “+72" In {4] it was shown that the theory of this
genus is equivalent to that of the genus above of discriminant 7, but part of the proof was ) LS
omitted. I shall make a record of that part here.
Theorem 10. Let A be an odd number. Then x ~+ y "+ 14z 2(resp. X4 2y T4+ 727)
- . z z z PR 2
represents Aif andonly if x +y~ +7z (resp. x"+2y +2yz+ 422) represents 2A.

Proof. From [4, Lemmas | and 2] we know the following: x “x y “+ 72

7K vimbens Aey,,}&%[c// ﬂf Z‘/uz penis ate Then 2F /fﬁ%3)¢
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(tesp. x_ + 2y "+ 2yz + 4z %) represents a number B if and only if x“+y” + 14z~
(resp. X+ 2y2+ 72%) represents 2B. Furthermore it is trivially true of any form that if it
represents A then it represents 4A. That covers the implications in one direction. The other
direction comes down to this: assume that X+ y2+ 14z *(resp. x "4 2y "+ 72°)
represents 4A and prove that it represents A. For X+ y + 14z * tthe argument goes as
follows: x and y have the same parity. If they are even, z must be even. If they are odd,
X+ yz =2 (mod 8), z must be odd, 1427, =6 (mod 8), and X+ y T+ 142" is divisible by 8,
a contradiction. For X+ 2y1+ 7z the argument is a little different. This time x and z have
the same parity, and if they are even, y is even. If they are odd, x “+72 =0 (mod 8),
y must again be even and x “+ 2y ” + 7z is divisible by 8, same contradiction.

Remark. We really need to assume that A is odd: both x “+ y T+ 14z and
X+ 2y7’+ 727/represent 24 but fail to represent 6.

-~

. .. . . v 2~ . .
Discrininant 15. I am commenting briefly on the form x + 8 +5z because it will come
ng y

up in treating an odd form below. Here is what I know. It is in a genus of two forms. The TN
forbidden integers are 25 k(25n 1 10). All eligible multiples of 3 are represented; this is
proved in [2] by the Standard method of relating it to the regular form xzi-2y1+ 2yz + 325
via the identity
x>+ 2y 4 2yz 432 ) =3k + Sy T+ (y +32) .
Up to 701 I found that thelioam)fai}s to represent the following numbers prime to 5:
M 2T6n

2, 11,22, 34, 38, 74, 158, 119, 287, and 298. The first few numbers prime to 5 and

squares mod 5 not represented by x + Sy} +152 are 11,26, 34,91, and 119.
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6. Odd forms with small discriminant. I have become used to used to using the term

—_——

"discriminant” for the determinant of the doubled up form. This is twice the discriminant as
used in [{].

Discriminant 22. I fast forward to 22 because up to then all genera have only one form.
Results in [3, pp. 173-4] are decisive. Of the two forms, one is regular, and the other
represents exactly the same numbers as the form X+ 3y “4 2yz + 4z” discussed above.
(This last point was stated without proof. A proof supplied by Dennis Estes was incorporated
into [6].)

Discriminant 24. Two forms, each in its own genus.

Discriminant 26. Just one form.

Discriminant 28. There are three forms. The two forms

j:xl+yz+4z¢+ xz+yz,m:xz+xy+2y2'+ 227
constitute a genus. Their theory is reducible to the even genus of discriminant 14 discussed
above. This is based on the identities
Yi=(2x+ 2) +Qy+z) +142°,4m=(2x +y) +7Ty "+ 82>
and observations made above: if u” + v “+ 14w is divisible by 4, then u, v, and w have the
same parity; if u 1+ v+ 7wLis divisible by 4, then v is even and u and w have the same
parity.

Discriminant 30. There are three forms. The two forms

p:x}ery+y2+521,q=x1+2y3+yz+2z1

constitute a genus. The form q is regular; I am not sure who first proved this - it is not in [2].




As for the form p, it represents exactly the same numbers as X+ 3y*+ 52 (because of the
well known fact that that the binary forms x* + Xy + ya'and x%+ 3y ;represent the same
numbers). The form xZ+ 3y “+ 52 *was discussed above.

Discriminant 32. There are no odd forms with discriminant an odd power of 2 (and all
other discriminants are possible). John Hsia sent me a proof of this.

Discriminant 34. There are two forms and they form a genus. Just one is regular. I am
breaking off at this point and may return some day.
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