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Notes on the classification of regular ternary forms
Irving Kaplansky

Not intended for publication

1. TIntroduction. 1In [2] there is the following promise:

.

A followup paper is planned; it will present detailed proofs and
descriptions of the computations."
This note is not the promised paper. It will take a while till that is ready.
In the meantime I decided to do a rush job on a preliminary note. It is
crude but I ﬁppe that it will give interested people an adequate idea of
how the classification was done.

A serious reader should have at hand part 7 of Watson's thesis [4]
(31 typed pages). A postcard request to me or to WCJI (will Jagy) will be
promptly honored.

For convenience I repeat from [2] some matters of notation and

terminology. A form g = ax™2 + by"2 + cz"2 + dyz + exz + fxy is

briefly denoted by a b ¢ d e £; g is called even if 4, e, and f are all
even and odd otherwise. Attached is the matrix

a £/2 e/2

A = £/2 b da/2 ;
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The discriminant of g is det(A) if g is even and det(2a)/2 if g is odd.

2. Schiemann's tables. The tables [1] give all odd forms up to

discriminant 1000 and all even forms up to discriminant 250, divided into
genera. Thanks to the courtesy of John Hsia I have a portion of these tables.
In December, 1995 I received from AS (Alexander Schiemann) an online version of
these tables. I have done a spotcheck comparison and they agree, modulo
occasional different choices of a canonical form.

I promptly did a complete search of these tables for regular forms.
Here's how that was done, genus by genus. let a form g in a genus G be given.
First remark: to be regular, g must have as its initial coefficient the
smallest that occurs in G (because in the tables the initial coefficient of
a form is the smallest number represented by that form). Suppose that this
is so. Now the task is to check whether g represents every number that is
represented by h, where h ranges over the other forms in G. WCJ devised
gn effective program, written within Mathematica. In many cases I was able
to dismiss th genus at a glance. Failing that, I used the program. The input
is a set of 12 numbers: the coefficients of g and h. A bound B is set in
advance. The output lists all numbers up to B represented by g (resp. h) that
are not represented by h (resp. g) Note that if neither dominates the other
we have killed both g and h; this is what happens most of the time. In
practice B was usually set somewhere between 50 and 100, but for small

discriminants B = 15 was usually good enough. If g passed the test the bound



was raised. If g survived B = 200 it was declared a provisional candidate.
For these runs a few secons sufficed, but on a few occasions B was taken as
large as 2000 and then the program ran for about an hour. A stab was next made
at proving regularity; there were a fair number of successes (mostly due to
WéJ) but 34 forms were stubborn. These 34 were then checked for regularity up
to a million. - This was done by a different program, written in C. The
numbers forbidden to all of G were determined (an easy task) and the program
checked whther g represented the complement, up to a million. This also
required about an hour per form.

Later in the procedure it was necessary to check discriminants
above 1000 in the odd case and 250 in the even case. For these selected
discriminants (about 200 in all) AS furnished electronically tables of
forms and genera. The largest discriminants treated in this fashion were
24334 for odd and 8000 for even.

In addition, AS devised a program that identified {(up to a preset
;imit) all forms that are alone in their genera. WCJ and I nicknamed these
"loners". For odd loners AS's search went to 30,000 and the largest
discriminant that appeared was 13068. Eventually it was proved that there
are no larger odd loners. For even loners the search went to 62600 and there
was no end in sight; the largest discriminant obtained was 57600 (two forms).
By another method (see item 10 below) the 12 remaining even loners were

identified, ending with discriminant 338688.
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WCJT and I are extremely grateful to AS for his expert, cheerful, and
prompt responses to our reguests. The project would have been impossible
without his contribution.

3. 0dd square-free. The method calls for first classifying the odd
forms and then proceeding to the even ones. So: until item 10 all forms are

odd.

There are 24 regular odd forms with square-free discriminants. This

is Theorem 2 in [4] and the list itself appears as Table I. (In all, there
are 6 theorems and 3 tables.) This much of part 7 of his thesis was published
in [5].

I will candidly confess that I still find parts of Watson's work
hard to follow; furthermore, at times he is admittedly sketchy. So, when I
first read [5] I redid it a little differently. His argument achieves a priori
bounds ‘for the discriminants in question, and this is interlaced with further
érguments that identify the forms themselves. I chose to concentrate on the
bounds, relying on the tables to complete the job.

Getting such bounds is a standard kind of thing. Let me give three
examples.

i) A form that represents 1,2,3 and 5 has discriminant ii 40.
Here is a sketch but I remark that additional details are needed Take

vector that represent 1 and 2. We get an upper left corner
>
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r 17
K 7?7 2
and the ? must be 0, 1, or 2 (positive definiteness). The worst case is ? = 0 where we

cannot use 3 for the lower right corner (since x*2 + 2y”2 represents 3) and must use 5.

So we have the estimate

207
L o042
z

? 7 10

The determinant is bounded by the product 80 of its diagonal elements, and so we
get 40.

(ii) A form that represents 1, 3, 5 and 7 has discriminant £77. The argument is
similar. This is what I really did in getting a bound in [3], although I did not put it that way.

(i11) Three numbers may be enough. For instance, a form that represents 1, 2 and 15
has discriminant <120..

I’ have accumulated a library of such bounds. As I write this I am engaged in the
project of finding the forms that are regular with exactly one exception. For this I need to
enlarge the library.

4. The admissible primes. The only primes that can divide the discriminant of a regular
form are those ;_ 17, together with 23. This covered by Theorems 3, 4, and 5 of {4].

Part 7 of Watson's thesis became available to me about two months before the
completion of the project. By then I had my own proof of this statement; it is similar but

differs in numerous details.
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5. The invariant (a, b). I treat the prime 2 in a special way (see

below) and p will always denote an odd prime. One knows that over the
p-adic numbers a primitive form can be written
< a 2 bz

rx*2 + spray’2 + tp*bz*2 = noa Y 2L + £ ]
with r, s, and t prime to p and a ;; b. The numbers a and b are unique, and
thus the pair (a, b) is an invariant. Watson instead used the greatest common
divisor of the 2 by 2 minors of the form. I find it a little clearer to
use (a, b). Note that (a, b) depends on p, but there should be no confusion.

6. The case a é; 2. In his Theorem 5 Watson proved that p must be 3.
Once again: my proof is similar but differs in details.

Now one has to figure out what happens for a é; 2, p = 3. I handled
this by a program for "going up by 81". I shall say something about this
below.

From now on, until item 9, assume that the discriminant is not
divisible by 4.

7. The case a = 0, b > 2. 1In Theorem 3 of [4] Watson proved that

i
ety

p must be 3 or 5. But much more is true: there are just 11 such forms. For
p = 5 there is the one example 50: 1 2 7 2 1 0; it leads off Table 2. For

p = 3 there are 10 examples: the first 10 forms in Table 3.

Watson's proofs become really sketchy at this point. My proof uses
additional a priori bounds for the discriminant plus brutal examination

of tables supplied by AS for selected discriminants above 1000.
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8. The case a= 1. This is the only possibility left. It is handled by a simple,
well known procedure for dropping from a regular form with discriminant D and
invariant (1, b) to a regular form with discriminant D/p and invariant (1, b - 1)
(At this point I shall mention a certain "speculation" that occurred in an early
manuscript. For those who never saw it or don't remember, it doesn't matter. Suffice

it to say that in the end the speculation turned out to be false, failing for exactly two

forms: 2592: 59 17653 and 8232: 5 13-40204 1.)

The problem is to reverse the procedure, so as to go up by p. How did Watson do this?
I'm stumped. The ideas in [G]Fnd the papers on which it builds may provide a clue, but I
haven't pursued this. I shall téll you how I did it. Let there be given a regular form D with
discriminant divisible by p. I asked AS for the table for pD (actually some such pD's were
not needed because of the behavior at other primes) and kept doing this until regularity
expired.

9. Discriminant divisible by 4. Did WatS(;n try this? Did he try and give up? Quote from

page 72: "A complete enumeration would be very laborious..."

I have a theorem about going down by 4 on odd forms that Watson may have missed. It is

quite a simple matter and I shall give a little detail.

An easy argument shows that any odd form can be normalized so that two of the
off-diagonal entries are even (the remaining one is of course odd). Let us write
g=abc2d2ef, fodd. The discriminant D of g is given by

D = 4abc - 4ad?2 - 4be”2 - ¢f*2 + 4def.
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We see that D is divisible by 4 if and only if ¢ is divisible by 4. We are assuming that
this is the case. Let us abuse notation by changing c to 4c. Then gisab4c 2d 2e f. We
are ready to name the target of the descent: itish=abcdef.

(The following is a fact which is not needed: quite aside from regularity, g ->his a
well defined mapping, i. e., independent of the choice of basis. That is, there is a canonical
map from odd forms of discriminant 4E to odd forms of discriminant E. The mapping is onto
but usually not one-to-one.)

(i) aand b odd. Suppose g represents an even number L. Then ax"2 + fxy + by”2
is even. Since a, b, and f are all odd, this implies that x and y are even. It follows that L is
a multiple of 4. Divide by 4 and we get that h represents L/4. This is reversible: if h

represents L/4 then g represents . We have identified the numbers represented by h with

the multiples of 4 represented by g, and this suffices to prove that h is regular.

(i1)- a or b (or both) even. Here the argumént is quite different: one shows that g and h
represent exactly the same numbers, whence h is regular. It is obvious that if g
represents L then h does, for
*) h(x, y, 22) = g(x, y, 2).
In the other direction we assume that h represents L. and have to prove that g represents L.
We take advantage of the regularity of g: it suffices to prove that g represents L g-adically for
every prime q. For q odd this is clear from (*). For q =2 we get the needed information
simply because it is standard that the big{r}ry section ax”2 + fxy + by”2 represents

everything g-adically.




)

With this result in hand we can proceed as above: knowing that there is a regular form
of discrinﬁnaﬁt D we examine all forms of discriminant 4D for regularity and iterate till
regularity expires. But there is also a program for "going up by 4" which will be mentioned
below. In fact, a combination of the two methods was used. Then, after the list of regular
odd forms was tentatively in final form, going up by 4 was applied to the entire list as an

additional check.

10. The reduction procedure for even forms. The discussion starts with a normalization
analogous to the one that was just used: one can arrange that the diagonal entries of an
even form are odd, even, even. Thus we take g =a 2b 2c 2d 2e 2f of discriminant D
with a odd. Suppose that g represents an even number ﬂ Then x has to be even. Replace:
x by 2x and divide by 2. We get the form h = 2a b ¢ d 2e 2f and we know that h is regular.
However, h may not be primitive and we distinguish cases.

(1) dodd (which is true if and only if D is odd). Then h is a primitive odd form of
discriminant 2D. We have a "descent" from reéular even forms of odd discriminant D to
regular even forms of discriminant 2D.

Remark. More is true. Put aside regularity. Then we actually get a one-to one

correspondence between the forms in question. This result is not needed so I skip the

easy proof. (Query: has any student of ternary forms noticed this ?) The correspondence
preserves genera and so a loner goes to a loner both ways. We already know that regularity of
the even form implies regularity of the odd form. The reverse is also true but I have no

a priori proof; it simply turned out to be true when all the facts were in. This provided a

welcome additional check.
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(ii)) deven. Now h is an even form of discriminant D/2. If h is primitive we have a
reduction from D to D/2. If h is not primitive we move further down to h/2 which is
primitive (since a% odd). If h is even it has discriminant D/16 and if it is odd it has
discriminant D/4.

-liemark We are paying a price here for not treating odd and even forms uniformly. If
we did (i. e., if we multiplied discriminants of even forms by 4) we could say that all descents
are divisions by 2 or 16. However, I feel that the price is well worth paying.

By iterating it is clear that any target form will eventually descend to a regular odd form..

But we know all regular odd forms.

Remark. Just this much gives some quick information. For instance, we deduce that the

admissible primes for regular even forms must be a subset of those for regular odd forms
(see item 4 above); <17 or 23. In fact 17 does not appear in the even case and the rest do.)

We are ready to proceed: climb up the eligible discriminants till regularity expires. We
began doing just that. But after a while it becan&e apparent that it wasn't going to work --
the discriminants would get too large. Now that the facts are in we can see in retrospect how
vexing the problem was going to be: the largest even loner has discriminant 338688. And
that's not the worst of it. This still has to be raised by 16 to the monstrous 5419008.
Impossible.

So an alternate method was sought. Let us review in matrix style what was done above
in a descent by 16 from even to even. Write A and C for the matrices upstairs and

downstairs. We find
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and deduce A = ECE where E is the matrix
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020
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/

\\ 002/
So the ascent back up from C to A is very simple. But wait: we could replace C by an
equivalent matrix C* = PCP' and EC*E is an equally acceptable lift. Trouble: there are an
infinite number of changes of basis. Is there a way out?

Yes, there is. Set Q = EPE "' so that EP = QE, PE = EQ". Then EC*E =
EPCP'E = QECEQ'. If Q is an integral matrix, we are getting an equivalent matrix upstairs
and all is well. It turns out that the condition for this is that the 12 and 13 entries of P
are even.

Let's look at the situation mod 2. The group of 3 by 3 invertible matrices has order 163
and the subgroup with O entries in the 12 and 13 positions has order 21 and index 7. Take
coset representatives. Then we can restrict our choices of P to integral matrices with

determinant 1 that map to these 7. Somewhat arbitrarily, the following 7 were picked:

the identity matrix and
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It would have been feasible but very tedious to treat by hand the output, form by form.
Fortunately a way was found to virtually automate it. The following is easily seen to be a
necessary (but by no means sufficient) condition for an upstairs form g to be regular.
Suppose both g and the downstairs form h represent an odd number L and that h
represents M with M = L (mod 8); then g has to represent M. This requirement was enforced
and skilfully programmed by WCJ. Moreover it was feasible to feed a whole file of forms to
the program and go away for a few hours to take a swim. It worked out as follows: most of
the output turned out to consist of forms already known. The handful of new ones were
treated individually; each was put under a microscope to answer the following questions:
What are the other forms in the genus (if any)? Is the form a viable candidate? Can we even
prove r%ularity‘?

Slight changes produced a program for going up by 2. These guccesses suggested
returning to odd forms to exploit the same ideas. The result: programs for going up by
4,81, and 3 on odd forms. For 81 and 3, 13 matrices were needed (13 = (373 - 1)/2). And

then we returned to even forms and ran going up by 81 and 3 on what we regarded as the

final list. It was pleasant that no new forms arose. The project closed.
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l_‘mal | remark. In doing the work there was a constant needed for checking whether two
forms that look different are actually equivalent. Doubtless there are lots of suitable
programs out there somewhere. Not having one available, WCJ wrote one that worked
brilliantly.::Even with the large discriminants needed here it gave an instant answer, and as a
bonus in the case of equivalence it furnished a suitable change of basis. The command word
is "siam" (for Siamese twins).
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