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THE REPRESENTATION OF BINARY QUADRATIC FORMS
BY POSITIVE DEFINITE QUATERNARY QUADRATIC FORMS

A. G. EARNEST

ABSTRACT. A quadratic Z-lattice I, of rank n is defined to be k-regular for
a positive integer k < n if [ globally represents all quadratic Z-lattices of
rank k which are represented everywhere locally by L . It is shown that there
exist only finitely many isometry classes of primitive positive definite quadratic
Z-lattices of rank 4 which are 2-regular.

1. INTRODUCTION

A necessary condition for the representation of a positive integer a by a
positive definite integral quadratic form Sxr, .0, xy) (1.e., the existence of
X € Z" such that f(x) = a) is that a be locally represented by f at all p-adic
completions (i.e., for each prime p, there exists Xp € Zp such that f (xp) =a).
Forms for which these local conditions are also sufficient to guarantee global
representation were first systematically studied by Dickson [ 3], who referred to
such forms as “regular”. For example, forms for which the genus and equiva-
lence class coincide (i.e., forms of class number 1 ) have this regularity property.
Primitive positive definite forms of class number 1 are known to occur in only
finitely many equivalence classes, regardless of rank [6]. A similar finiteness
result for ternary regular forms follows from a fundamental theorem of Watson
[10], who considered the number E (f) of positive integers which are rep-
resented everywhere locally, but not globally, by a primitive positive definite
ternary form f, and proved that E (f) is asymptotically bounded from be-
low by a power of the discriminant of S . In particular, from this it follows
that primitive positive definite ternary regular forms, being those for which
E(f) = 0, have bounded discriminant and thus occur in only finitely many
equivalence classes. In contrast, for any fixed rank » > 4, it can be shown
that there exist infinitely many inequivalent primitive positive definite regular
forms. For example, since the form x{ +x3 + x? + x7 is universal, any form
which represents this particular form is regular. There is a considerable body
of literature devoted to the problem of finding positive definite ternary regular
forms (see [ 4] and the references given there for results of this type).

In this paper, we initiate the study of higher-dimensional analogues of Dick-
son’s regularity condition. The geometric language of quadratic spaces and lat-
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tices will be adopted throughout the paper, and notation and terminology will
follow that of O’Meara’s book [8]. The aim of this work is to study the lat-
tices represented by a given Z-lattice L on a positive definite rational quadratic
space V' . The dimension » of ¥ will initially be arbitrary, but will be special-
ized to n =4 in §4. A Z-lattice K on a rational quadratic space W is said to
be represented by L, denoted K —-L , if there exists an isometry 0 : W — V
such that o(K) C L. In the local setting, representation K, —L, 1s defined
analogously for the p-adic completions of K and L.

Definition 1.1. Let L be a quadratic Z-lattice of rank n, and k a positive
integer not exceeding n. Then L will be said to be k-regular if L represents
all quadratic Z-lattices K of rank k for which K, —L, for all prime spots

p on Q.

Proposition 1.2. If L is a k-regular lattice, then L is m-regular for all positive
integers m< k.
Proof. Let M be a Z-lattice of rank m for which M, —L, holds for all prime
spots p on Q. Then there exists L’ in the genus of L such that M —L’ [8,
102:5). Let £ € Jy be such that L' = XL , and let K be a sublattice of L’ of
rank k which contains M . Then for each p, %, 1K, € Z;‘L;, = L, . Thus,
K, —L, holds for all p, and then K —L follows from the assumption of
k-regularity. So M —L. 0O

The main goal of this paper is to prove the finiteness of the number of isom-
etry classes of primitive 2-regular positive definite quaternary Z-lattices (The-
orem 4.3). This theorem will be proved by analyzing the successive minima
of 2-regular lattices. It will be shown that the 2-regularity condition leads to
inequalities of the type u j < C;D% , where yu; isthe jth successive minimum
of the 2-regular lattice L, D is the discriminant of I , C; is a constant, and
0 < (ai+az+as+ay) < 1. Thus pipiapsity < CD# | where C is a constant and
0 < B < 1. But this inequality can be consistent with the elementary inequal-
ity D < myuyusus for at most finitely many values of D . Hence, primitive
2-regular positive definite quaternary lattices must have bounded discriminant,
and the desired finiteness follows. :

We note that in the proof outlined in the preceding paragraph the estimates
for uy, py and u; are established by using only the 1-regularity of the lattice.
Hence, similar estimates can be obtained in a completely analogous way for
I-regular ternary lattices, leading to an alternate proof of the finiteness in the
ternary case. The stronger assumption of 2-regularity is required only to obtain
a suitable bound for u,.

2. SUCCESSIVE MINIMA

Let L bea Z-lattice on the positive definite rational quadratic space (V, Q)
of dimension n. We will assume that L is integral, in the sense that B(x, y) €
Z for all x,y € L, where B is the symmetric bilinear form on V defined
by B(x,y) = 3[Q(x +y) — Q(x) — O(y)]. The next definition and lemma are
adapted from [ 2, Chapter 12].

Definition 2.1. For 1< j < n, the jth minimum of L is that positive integer
4; such that
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(i) dim(span{x € L: Q(x) < 4;}) > j and
(i) dim(span{xe L:Q(x) < g;})<j.

The values u;, ..., u, will be collectively referred to as the “successive min-
ima” of L. The existence of linearly independent vectors m;, ..., m, € L
with Q(mj) = u; can be established by induction on the dimension, using the
following lemma.

Lemma 2.2. For some j € {2, ..., n}, suppose there exist linearly independent
vectors my, ... ,mj_y € L suchthat Q(m;)=y; for i=1,...,j—1.Ifce L
satisfies the inequality Q(c) < u;, then c € span{m,, ..., m;_;}.

Proof. Let | be the smallest subscript such that Q(c) < u; (so 2 </ < j and
-1 < Q(e) <y ). If ¢ ¢ span{my, ..., m;_,} then ¢ ¢ span{m;, ..., m_,},
and it follows that dim(span{m,, ..., m,_;, c}) =/. But then

dim(span{x € L: Q(x) < Q(¢)}) > /

and it follows that Q(c) > y;, a contradiction. O
The following proposition gives two fundamental inequalities relating the
discriminant of L and the product of its successive minima.

Proposition 2.3. Let L be a lattice of discriminant D with successive minima
His ..., Uy . Then there exists a constant C (= C(n)) such that

D<py--pun <CD.

Proof. The existence of a constant C for which the second inequality holds is
a classical result of Minkowski (see, e.g., [2, Chapter 12]). The proof of the
first inequality requires only real linear algebra, but we sketch a proof in the
present context for completeness. Let B = {v;, ..., v,} be a basis for L, and
M = (B(vi,v;)); so D = det(M). Let m;, ..., m, be linearly independent
vectors of L such that Q(m;) = y;, let x; be the coordinate vector (written as
a column vector) for m; with respect to B, and let X € M,(Z) be the matrix
with columns x,, ..., x,. The matrix 4 = X!MX is positive definite and so
is orthogonally similar over R to I, ; thus, there exists P € M, (R) such that
A= P'P. Write P = TP, with T orthogonal and P, upper triangular, and
denote the ijth entry of P, by p;;. Then 4 = P{P; and the ith diagonal
entry of A4 is seen to be

wi=Q(m) =Y p}>ph
j=1
So
] #: > [] P2 = (det(P1))? = det(4) = (det(X))2D.
i=1 i=1

The desired inequality now follows since det(X) is an integer. 0O
We close this section with a specialized result which is tailored to its appli-
cation in the proof of Theorem 4.3.

Lemma2.4. Let L be a lattice of rank 4 with successive minima p,, ..., us, let
m;, ..., my be linearly independent vectors in L with Q(m;)=p;, 1 <i<4,..
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and let M =span{m;, my, m3} NL. Let K be a binary lattice with successive
minima py, w,. If K is represented by L, but not by M, then p4 < ), .

Proof. Without loss of generality, we may assume that K C L. Let m{, m), € K
be linearly independent vectors such that Q(m}) = 4} and Q(mj)) = 4} . Note
that Q(m) +mj}) > x4} implies that [B(m/|, m})| < 1Q(m}). We first establish
that K = Zm| + Zm,, . If not, then there exist r, s € Q, not both integers, such
that v = rm| + sm), € K (since m|, m), span QK ). Subtracting off integral
multiples of m| and m/ if necessary, we may assume that 0 <r, s < 1 with
not both r and s equal 0. So

Q(v) = Q(rm| + smy) < 7Q(m}) + 7Q(m}) + 3|B(mi , m))|
< 30(mj) < Q(m)).

If s # 0, then dim(span{m], v}) = 2 and Q(v) < g}, a contradiction. If
s =0, then v=rm| € K and Q(v) < y4;, again a contradiction. Hence it must
be that K = Zm| + Zm/, , as claimed.

Now K ¢ M, by assumption. So, since K = Zm) + Zm),, we must have
either m{ ¢ M or m), ¢ M. Then g} > u, follows from Lemma 2.2. O

3. ESTIMATION OF CHARACTER SUMS

The material in this section closely paraliels the estimation of character sums
in Watson’s original paper [ 10], and indeed the main terms in the estimates
remain unchanged. However, detailed proofs of some results are included here,
since it is the precise form of the error terms which will play a critical role in later
arguments. In this regard, it is the use of the character sum estimate of Burgess
[ 1], rather than that of Pdlya [ 9], which leads to the needed improvement.

The notation in this section is largely independent of that in the rest of
the paper. Throughout the section, i, ..., 3, will denote a set of Dirichlet
characters modulo ki, ..., k,, respectively, #,, ..., 5, will be values from the
set {1}, and I" will be the least common multiple of %;, ..., k.. Our goal
here is to estimate the number S(H) of positive integers n less than some
value H which satisfy the conditions

(3.1) xilm)=n;, fori=1,...,r
and
(3.2) ged(n, Ay =1,

where A is a positive integer relatively prime to I".

An inequality of the form 4 <« B will mean that there exists a constant
k such that |A] < kB. Alternatively we will write 4 = B + O(C) when
(A— B) < C. Moreover, a statement of the type “ 4 < B**¢ ” will always mean
“for any ¢ > 0, A < B"® where the implied constant depends only on ¢&”.
In particular, the symbol ¢ is used throughout in a generic sense and is not
assumed to have the same value at every occurrence.

It will be convenient to introduce some additional notations for the proof of
the next result. We will denote the two-element set {1, 2} by 7 and use the
notation e = (e, ..., &) for elements of the product set 77 . For any such e,
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e = [1;_;(mixi)% is a Dirichlet character modulo I'. If e = ey = (2, 2, ..., 2),
then 7. is the principal character modulo I'. We will say that x;,..., x, are
“independent” if 7, is a nonprincipal character for all e # e .

Lemma 3.1. If x1, ..., xr are independent, then
Yo o1=27 S 1+oHirE).

O<n<H O<n<H
(3.1) ged(n,IN)=1

Proof. 1f (3.1) holds for n, then =m.(n) = 1 for all e € T7. On the other
hand, if (3.1) fails for n, then there exists j such that either x;(n) = 0 (if
ged(n, kj) # 1) or nxi(n) = —1 (if ged(n, k;j) = 1). If xj(n) = 0, then
Me(n) =0 forall ee T". If n;x;(n) = —1, then > . (n;x;(n))% =0. So we

obtain ) )
0 if (3.1) fails for n,
2o mm=1, (3.1) holds for n
et . s ;
Hence,
2 Z 1 = E (Z ne(n)):Z( Z ne(n))
O<n<H O<n<H ‘ecT” ecT” 0<n<H
3.1)
= Z neo(n)+2( Z ne(n))
O<n<H ecT" *O<n<H
eseg
= Z 1+Z(Z ne(n)).
O<n<H ecT” “O<n<H
ged(n, IN)=1 eieg
So
> Y- % 1‘52 S ).
O<n<H O<n<H ecT” 'O<n<H
(3.1) ged(n,I)=1 eFeg

For each e # ey, m. is a nonprincipal character modulo I', and it follows from
[ 1, Theorem 2] that
> 7me(n)

O<n<H

< HiT%+e,

Hence,
7 N 1=y 1|<<2'—1H%r%+8,

O<n<H O<n<H
(3.1) ged(n ,TN)=1

and the desired result follows. O
Proceeding exactly as in the proof of Lemma 4 in [ 10 ], the following estimate
for S(H) can now be derived from Lemma 3.1.

Proposition 3.2. If x;, ..., xr are independent, then

S(H) = 2"m¢§_¥f)H + 0<H%r%+8AE) :

where ¢ denotes Euler’s phi-function.
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The main use of this result in later arguments will be to obtain an upper
bound, in terms of the magnitudes of I and A, for the smallest positive integer
h for which conditions (3.1) and (3.2) hold. In terms of the sums S(H), h
can be characterized as min{H € N: S(H) > 0}.

Corollary 3.3. Suppose that y,, ..., x, are independent and r < w(T) + 1,
where w(I') denotes the number of distinct prime divisors of T'. Then h «
Ti+epAe

Proof. By Proposition 3.2, there exists a positive constant C such that, for all
H,

S(H) > 2—'9%“—)11 ~ CHITf+eAe,
It follows that S(H) > 0 whenever
A _,
VH > 2'C =T %+eAz,
¢(T'A)
Furthermore, 2" « 29T < ¢(T') « I'*, where 7(I") denotes the number of
positive divisors of I", and Eb{léT) < (I'A)? (e.g., see[5]). The desired inequality

h < T3+A? follows. O
The following minor refinement of Corollary 3.3 will also be needed.

Corollary 34. Let ny satisfy (3.1) and (3.2), and let ho = min{n €¢ N: (3.1)
and (3.2) hold, and n # A*ny for any A € N}. Then, under the assumptions of

Corollary 3.3, hy < T3+eA .

Proof. Let
So(H) = Z 1.
O<n<H
(3.1),(3.2)
n#ilng
Then JE
H
So(H)=SH)- > 1=SH)- [[——-—]]
]
]<,l<\/ﬁ/n0
As
[[@ﬂ = O(H1)
no
we obtain from Proposition 3.2
So(H) = 2-'%9—)H + O(HITH%+EAr),

The proof now follows as for Corollary 3.3. O

4. REPRESENTATION BY QUATERNARY LATTICES

Let (V, Q) be a positive definite rational quadratic space of dimension 4
and let L be a Z-lattice on V of scale Z and discriminant D. Such a lat-
tice L is said to be even (odd, respectively) if its norm ideal nL is 2Z (Z,
respectively). Write D = [[D,, where D, = p°4»? and the product is taken
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over all primes p. To distinguish between orthogonal splittings of lattices and
spaces, it will be convenient to use the notation (o, ..., a,) for the former and
[ay, ..., a,,] for the latter. For each odd prime p, L, has a splitting of the
type L, & (a,, p7B,) L L, , where a,, B, € %,, 1, is a nonnegative integer,
and sL, C p*Z,. Let T, (T 5 , respectively) denote the set of odd primes p for
which rp >1(r,=0 and sL, C pZ,, respectively), and let T = Ty UT,U{2}.

For p € T, , we have p*» < D, and so p’v < Dé - for p € T,, p*|D implies

that p < D% For the prime 2, there are two possible types of splittings to con-
sider. If an =27,let r,= 0 On the other hand, if nL, = Z, then there is a
splitting L, = Z,x L L), with Q(x) € %, and sL) C Z;; in this case, let r, de-
note that nonnegative 1nteger such that nlL} = 2" Zz Note that sL} C 22717,

and it follows that vL), C 23217, ; thus, 3(r, — 1) <ordydLy = ordzD and
27 < (8D,)3 . Let Q denote the product [ er p™ - From the above inequalities

it follows that Q < (8 T],er Dp)} < (8D)3.

Lemma 4.1. For each p € T, there exists a binary Zy-lattice N(p) C L, such
that sN(p) =Z, and ord,dN(p) =r,.
Proof. For odd p € T, simply take N(p) C L, such that N(p) = (ap, P?Bp) .
So we consider further only p = 2. To analyze the splitting of L, , it is helpful
to first summarize some facts regarding the splitting of lattices over Z; (for
details and proofs, see [8, §93]). If K is a Z,-lattice with scale 2/7Z, , then
any Jordan splitting of K contains a 2/Z,-modular component M . Moreover,
nK = 2/Z, holds if and only if nM = 2/Z,, which in turn holds if and only
if M has an orthogonal basis. Otherwise, M (and hence K) is split by a
plane isometric to 2/4(2, b) for either b = 0 or b = 2. Returning now to
the situation at hand, we see that if nl, = 2Z, then L, is split by a binary
unimodular sublattice N(2) as desired. In case nL, = Z,, consider further
the splitting L, = Z,x L L) with Q(x) € % and sLj C Z,. If nL; = sLj,
then L} = Zyy L L} for some y € L), with ord, Q(y) =r. If nL) =2sL;,
then L) is split by a plane Zy + Zzw with ord; Q(y) = r,. In either case,
N(2) = sz 1 Z,y has the required properties. [

For the remainder of the section, for each p € T fix a lattice N(p) satisfying
the conditions in Lemma 4.1, and let d, € Z, be such that dN(p) =Jp

Proposition 4.2. Let g and q' be primes not dividing D. If n is a positive
integer such that qg'nQ =6, forall p € T and ged(n, 2qq'D) = 1, then there
exists a binary Z-lattice K (= K(n, q, q')) such that

(1) dK =qq’'nQ, _

(i) Sy(QK) = +1
(i) QK —V, and
(iv) K, =L, forall p in the set S of all nonarchimedean prime spots on Q.

Proof. For simplicity, we write © (= 8(n, q, ¢’)) for the product qq’'nS).
For p# 4, q', let U(p) denote a binary space over Q, such that

~ | QN() ifpeT,
U(”"{[l,el ifpeTU{g, q}.
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Since 6 ¢ —Qj and © ¢ ——Qz, , there exist binary spaces U(g) and U (")
over Q, and Q. , respectively, with dU(q) =0, dU(q') = 0, SqU(g) = +1
and S, U(q') = 11, +¢SpU(P) [8, 63:23]. Note that © is a positive integer
such that dU(p) = © holds for all p (for p € T this follows from the as-
sumption that gq'nQ 2 §,). Since SpU(p) = +1 holds for almost all p and
I1,S,U(p) = +1, there exists a global binary space W over Q for which
Wp = U(p) forall p [8, 72:1].

Next we will show that W, —¥, holds for all p. Such a representation is
guaranteed to exist unless dV, = —dW, and Vo 2 W, L H, where H is a
hyperbolic plane [ 8, 63:21]. First, for p ¢ T, W, —V, follows from the fact
that W, = Q,N(p) and Q,N(p) C ¥,. Next, if p|D but p ¢ T,then L, has
a ternary unimodular Jordan component L,. As B8 ¢€%,, it follows from [ 8§,
92:1a] that L, = (1, ©, Bu) for some u € %,; so W, —V,. Now consider
those primes p for which p { 2D. If ord, © is odd (note that this includes
the cases p = q, q'), then dV, = —d W, does not hold and we are assured
that W, —V,. If ord, © is even, then Sp(W, L H) =S,([1,6,1, -1]) =
1 = S§,Vp, the last equality holding since L, =~ (1,1, 1, D) with De 7%, [8,
92:1]. So again W, —V, . Finally, for the infinite spot p, W, —V}, holds since
© > 0 and thus W, is positive definite. We have now completed the verification
that W, —-¥}, holds for all p. It follows from the Hasse-Minkowski Theorem
that W —V .

Now we turn to the construction of a lattice X on W having the required
properties. Note first that there exist x, y € W such that W = Qx L Qy and
Q(x)Q(y) = ©. For the lattice M = Zx 1 Zy, sM, = Z, holds for all primes
p outside some finite set X. We proceed to define local lattices J (p) for each
peS. Foreach p ¢ XUT, let J(p) = M,. For p e T, let J(p) be a
lattice on W), isometric to the lattice N(p). For p € 2\(Tu{q,q}), let
J(p) be a lattice on W, isometric to (1, 6). If g € X, proceed as follows
to define J(g). Since ord, dW, = 1, W, represents an element « € Q, with
ord;o even. So there exists some w € W, such that Q(w) € %,, and W,
has a splitting W, = Q,w L Q,z with Q(z) € ¢%,; let J(q) = Zyw L Zgz.
Finally, if ¢’ € X, obtain a lattice J(q’) exactly as described for J (q). So for
all p € S we have now defined local lattices J(p) on W, with the properties
that dJ(p) = © and sJ(p) = Z,. Moreover, J(p) = M, for almost all p.
So there exists a Z-lattice X on W such that K, = J(p) forall pe S [8,
81:14]. In particular, sK =Z and dK = 8.

To complete the proof, it remains to show that K, —L, for all p € §
or, equivalently, that J(p) —L, for all p € S. For p € T this follows
immediately from the definition of J(p). For p|D, p ¢ T, Jip) L,
follows from [ 8, 92:1a] (since dJ(p) € %, and L, has a ternary unimodular
Jordan component). Finally, for p { 2D, L, is unimodular and 5Ky = Zp;
so [ 7, Theorem 1] reduces the representation problem to the corresponding
problem for the spaces spanned by the two lattices. As W, —V, has already
been established, it again follows that K, —L,, and the proof is now complete.

O

Theorem 4.3. There exist only finitely many inequivalent 2-regular primitive
positive definite quaternary lattices.
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Proof. Let L be a 2-regular primitive positive definite quaternary lattice. We
continue the notations for the local splittings of L established in the first para-
graph of this section. For each p € T} U T», define ¥, to be the character
modulo p defined by the Legendre symbol ( >) and define v, € {1} by

| (ap, D)y if L is odd,
= (2)(ep,p), if L is even,

where (a,, p), denotes the Hilbert symbol. To handle the prime 2, we need to
introduce two characters. Let ¥_; and W, be the characters modulo 8 defined
by the Jacobi symbols (:}) and (;2-) , respectively. If nlLy = Z, (nL, = 2Z,,
respectively) then there exists x € L, such that Q(x) € % (Q(x) € 27,5,
respectively); let & € {1, 3,5, 7} be such that Q(x) € ¢%? (Q(x) € 2£%2,
respectively). For odd integers k, the values of ¥_;(k) and W,(k) determine
the congruence class of k modulo 8. So there exist v_;, vy € {1} such that
W_i(k) =v_, and ¥;(k) =, hold if and only if k =¢& (mod 8).
Now suppose that k is a positive integer satisfying

(4.1) ¥y(k)=v, forallpeTyu{-1, 2}
and
(4.2) ged(k, D)= 1.

If L is odd (even, respectively), then the condition (4.1) guarantees that k (2k,
respectively) is represented by L, forall p € T; U {2} . For the primes p € T3,
L, has a binary unimodular Jordan component and thus (4.2) guarantees that
L, represents both k and 2k [8, 92:1b]. For those primes p outside T,
L, has a unimodular Jordan component which is at least ternary and again L,
represents both k& and 2k [8, 92:1b). Hence, L locally represents all integers
k (if L is odd) or all integers of the form 2k (if L is even) for which (4.1)
and (4.2) hold. Since L is 2-regular (and hence regular), it follows that L
globally represents all such integers.

Let 4, be the minimum of L. Applying Corollary 3.3 with characters {¥, :
p e TTU{-1, 2}}, specified values {v,:p € TyU{~1,2}} and A the product
of all primes dividing D but not in 7; U {2}, we obtain

3+e
<L (8 H p) A®
PET,
and, since 2J[,. p<Q< (8D)%, this yields

(4.3) 1y < D¥*e,

Now let m; € L be such that Q(m;) = u; . If n € Q(L) and n # y*u; for any
? € Z, then dim(span{x € L : Q(x) < n}) > 2 and it follows that the second
minimum g, of L satisfies uy < n. Applying Corollary 3.4 with characters,
specified values and A as above and ny = u; , we obtain

(4.4) fy < D+,

Let m;, m; be linearly independent vectors in L such that Q(m;) = u;
for i=1,2, and let G = span{m;, my} N L. The successive minima of the

binary lattice G are y; and u;. So dG < uu, by Proposition 2.3, and it




862 A. G. EARNEST

follows from (4.3) and (4.4) that dG <« Ds*¢. Let f be the smallest prime
not dividing 2D for which ("'—;{Q) = —1. To estimate the size of f, apply
Corollary 3.3 in the case that r = 1, the only character is the character modulo
8d G defined by the Jacobi symbol (:‘;’Q) , the corresponding value of 7 is
—1, and A 1is the product of the odd prime divisors of D which do not divide
dG. This yields f <« dGi+¢A¢ which, combined with the estimate for dG
above, gives f < D#*¢ . Next, let m be the smallest positive integer for which
ged(m, fD) =1 and ¥,(m) =¥,(f)v, holds for p € T; U{-1, 2}. Arguing
as in the preceding paragraph (with v, replaced by ¥,(f)v, and the A used
there replaced by fA), we obtain m < D#*¢. Since the conditions (4.1) and
(4.2) hold for k = fm, either fm or 2fm is represented by L. However,
neither fm nor 2fm is represented by G. To see this for fm, compare the
Hasse symbols at f of the spaces [fm, fmdG] and QG. On the one hand,
Sr(QG) = +1 since f{dG. But Sy([fm, fmdG]) is easily computed to be
(‘—}-’Q) = —1, using the conditions f{dG and f{m. The verification for 2 fm
is identical. Thus, there exists y € L such that Q(y) < 2fm and y¢ G. So
dim(span{x € L : Q(x) < 2fm}) > 3, and it follows that the third minimum
us of L satisfies

(4.5) 3 < D%E*e

Now let m;, m;, m3 be linearly independent vectors of L with Q(m;) = y;
fori=1,2,3,andlet M =span{m;, m,, m;}NL. The successive minima of
the ternary lattice M are yu;, pu; and u;. So dM < u upu3 by Proposition 2.3
and it follows from (4.3)—(4.5) that dM < D¥+¢_ Let q be the smallest prime
not dividing 2D for which (ifl‘—’) = —1. Arguing as for f in the preceding
paragraph yields ¢ <« D¥'3+¢ = D%+t Let ¢’ be the smallest prime not
dividing 2gD. Then ¢’ <« D¢ follows from Corollary 3.3 (applied in the case
that there are no character conditions). Let n be the smallest positive integer
for which ¢q'nQ = 6, holds for all p € T and gcd(n, 2qq’D) = 1. For each
PET, 6(q9 Q)" €%, and qq'nQ = 4§, is equivalent to n € J,(qq'Q)~'%? .
So there exist o_; and {a, : p € T} in {1} such that the conditions ¥_;(n) =
o_; and ¥,(n) = g, hold for all p € T if and only if g¢'nQ = J, holds for all
p € T. Applying Corollary 3.3 with characters {¥, : p € T U {—1}}, specified
values {0, : p € TU {—1}} and A equal to the product of all prime divisors
of gq'D which do not lie in 7', we obtain n < I'i**A¢ , where I' = 8 HpeT p.

Now HPGTl p= HPGTl p” < HPETI Dé and HPEsz < HPETZ Dé . So

(1) (1) (117)

peT pET, PET
<<D§<H D}*)(H D;%) < D%,
PET peET,
Thus,
(4.6) qq'nQ < DI%HEte = piEte,

By Proposition 4.2, there exists a binary Z-lattice K (= K(n, g, q')) such
that dK = qq'nQ, S$;(QK) = +1 and K, —L, for all p. Since L is
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2-regular, the last condition implies that X —L . However, K is not rep-
resented by the ternary sublattice M. To see this, compare the Hasse sym-
bols at ¢ of QM and QK L [dK - dM]. On the one hand, S, (QM) =
+1 since ¢ f dM. On the other hand, S,(QK L [dK -dM]) = S7(QK) -
(dK-dM, -1),(dK, dK . dM), by [8, 58:3], S,(QK) = +1 by the construc-
tionof X, (dK-dM, 1), = (dK, ~1)y =(q, —1), since q{¢'nQdM , and
(dK,dK-dM), = (dK, —dM), = (g, —dM),. So

S(QK L (K -aM)) = (@, by, = (D) = -1 4 5,000,

Let uf, 5 be the successive minima of X . Then My < up and, by Lemma 2.4,
M4 < 1y, where py4 is the fourth successive minimum of L. So puiupuszps <
My By o3, and, by Proposition 2.3, miph < dK = qq'nS. Combining (4.4)-
(4.6) yields

(4.7) M fopspy < D3titisi+e - pRi+e,

For ¢ sufficiently small that 24 +€< 1, (4.7) is consistent with the 1nequality
D < pypopsus from Proposition 2.3 for only finitely many values of the dis-
criminant D . Thus, we conclude that the discriminant of a 2-regular primitive
positive definite quaternary lattice must be bounded. Hence, such forms can lie
in only finitely many equivalence classes. [J
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