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Introduction
It may be a challenging problem to describe the
integer solutions to a polynomial equation in sev-
eral variables. Which integers, for example, are
represented by a quadratic polynomial? This
question has a rich and complex history, and the
theory it has motivated is still flourishing today.
My aim in this article is to describe some recent
developments in this theory, especially about
positive quadratic forms in three variables, and
to introduce the nonexpert to some of its basic
themes. Let us begin with a classical and easily
described example.

An Assertion of Fermat
As early as 1638 Fermat made the statement
that every number is a sum of at most three tri-
angular numbers, four squares, five pentagonal
numbers, and so on.1 In a letter to Pascal in
1654 he describes it as being so far his most im-
portant result. Much doubt has been cast upon
his claim for a proof, especially for the case of

three triangular numbers.2 Two hundred years
ago Gauss began his mathematical diary, and
among the early entries is his famous
Archimedean allusion dated July 10, 1796,

∗∗ EΥPHKA num =4 +4 +4.
Gauss is recording that he has found a proof that
every positive integer m can be written as the
sum of three triangular numbers. The triangu-
lar numbers are 0,1,3,6,10,15, . . . ,
(1/2)n(n + 1), . . . , so Gauss's statement means
that every number mmay be represented by the
particular quadratic polynomial in three variables

m =
n2

1 + n1

2
+
n2

2 + n2

2
+
n2

3 + n3

2
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1Triangular numbers are the numbers 1,3,
6,10, . . . , (1/2)(n2 + n), . . . ;  squares are 1,4,9,
16, . . . , n2, . . . ; pentagonal numbers are 1,5,12,
22, . . . , (1/2)(3n2 − n), . . .; and hexagonal numbers
are 1,6,15,28, . . . ,2n2 − n, . . . . In general, the nth
polygonal number of order k is given by the quadratic
polynomial (1/2)[(k− 2)n2 − (k− 4)n]. To simplify
statements, we shall include 0 as a polygonal number.
2For an authoritative discussion of the early history and
references, see [24].
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with nonnegative integers n1, n2, and n3. This
is equivalent to the equation

8m + 3 = (2n1 + 1)2 + (2n2 + 1)2 + (2n3 + 1)2,

so Gauss's statement is equivalent to the state-
ment that every number of the form 8m + 3 is
a sum of three odd squares. The more general
theorem that a number is a sum of three squares
precisely when it is not of the form
4b(8m + 7) for b ≥ 0 was first published by Le-
gendre in 1798, and this fundamental result was
given a definitive proof by Gauss in his Disqui-
sitiones in 1801. That every number is a sum of
four squares was proved earlier by Lagrange in
1772 building on work of Euler. In 1813 Cauchy
gave the first proof of Fermat's assertion in total
by deriving it in an elementary (but involved) way
from the three triangular number theorem.
Cauchy's theorem is sharp in the sense that
there are numbers which cannot be represented
by fewer than k polygonal numbers of order k,
for example, 2k− 1.

Some time later Dirichlet gave a beautiful for-
mula for the number of ways in which m can be
expressed as the sum of three triangular num-
bers. In the special case that 8m + 3 is a prime
it says that this number is the excess of the
number of quadratic residues (squares modulo
8m + 3) over nonresidues modulo 8m + 3 in the
interval from 1 to 4m + 1.3 A triangular number
is an example of a polygonal number of order
three. The nth polygonal number of order k
may be defined as the sum of the first n terms
of an arithmetic progression with first term 1 and
common difference k− 2, and so is given by the
quadratic polynomial (1/2)[(k− 2)n2 − (k− 4)n].
As their name implies, polygonal numbers have
a geometric origin. This may be seen in the ac-
companying figure (Figure 1). Quite a lot of early
number theory was concerned with various prop-
erties of these and other geometrically related
sequences [4].

It has recently been pointed out by Guy [11]
that some interesting and difficult problems
about representing integers as sums of polygo-
nal numbers are still open. Without going into
details, I will describe an example where some
progress has recently been made on one of these
old problems. Legendre, in the third edition of
his Théorie des Nombres of 1830, proved by el-
ementary means that every number larger than
1,791 is a sum of four hexagonal numbers. The
question arose whether or not three hexagonal

numbers eventu-
ally suffice. Theo-
rem 1 of [10] has
the following ap-
plication to this
question.

Theorem. Every sufficiently large
number is a sum of three hexagonal
numbers.

Since the nth hexagonal number is
n(2n− 1), which is also the
(2n− 1)st triangular number, this
result is a kind of strengthening of
the three triangular number theo-
rem of Gauss. However, it has the
drawback of being noneffective in
the sense that an explicit bound for
the largest number which is not a
sum of three hexagons cannot be
given at present, unless one is will-
ing to assume conjectures like the
Riemann hypothesis. We shall see
the origin of this defect later.

Before going into the general
problem of representation and some
of the methods used to study it, I will
first describe two more recent re-
sults about quadratic forms placed
in their historical context.

A Paper of Ramanujan

In 1917 Ramanujan [16] published
a paper which was to have a big im-
pact on subsequent research on rep-
resentations by quadratic forms. He
considered the problem of finding all
integers 0 ≤ a ≤ b ≤ c ≤ d for
which every positive integer is rep-
resented in the form

ax2
1 + bx2

2 + cx2
3 + dx2

4.

An elementary (and amusing) case-
by-case analysis shows that in order
for 1,2,3,5 to be represented, the
first three terms (a, b, c) must be
(1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3),
(1,2,4), or (1,2,5). None of the asso-
ciated ternary forms ax2

1 + bx2
2+

cx2
3 represents all numbers, the

smallest exceptions being, respec-
tively, 7, 14, 6, 7, 10, 14, and 10.
This leaves 55 possible quaternary
forms, and, based on simple rules for
the integers represented by the
above ternaries which Ramanujan
discovered empirically, he concluded
that these 55 forms actually do rep-

3For instance, when m = 2 so 8m + 3 = 19, the qua-
dratic residues modulo 19 up to 9 = 4m + 1 are
1,4,5,6,7,9 and the nonresidues are 2,3,8, so the excess
is 3, which is the number of ways of expressing 2 as a
sum of three triangular numbers: 2 = 1 + 1+
0 = 1 + 0 + 1 = 0 + 1 + 1.

Figure 1. Polygonal numbers figured
prominently in problems of early number

theory. 

Triangular numbers arise by counting the
number of points in a triangular array.

The sequence of triangular
numbers is thus 1, 3, 6, 10, 15, ...

Similarly, the sequence of
squares is 1, 4, 9, 16, 25, ...

Pentagonal numbers: 1, 5, 12, 22,
35, ...

Hexagonal numbers: 1, 6, 15, 28,
45, ...

The nth polygonal number of
order k is given 

by the formula
1/2[(k− 2)n2 − (k− 4)n].
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resent all numbers.4 It is natural to generalize
Ramanujan's problem to other quadratic forms.
An integer–valued m-ary positive quadratic form
(or just a form) is a homogenous quadratic poly-
nomial Q(x) = Q(x1, x2, . . . , xm) with integral co-
efficients which satisfies Q(x) > 0 for real x 6= 0.
Such a form may be represented in matrix no-

tation by Q(x) = xtAxwhere A = 1
2
∂2Q(x)
∂xi∂xj is a pos-

itive symmetric matrix. If A has integer entries,
then Q(x) may be called an integer-matrix form,
for example, the diagonal form ax2

1+
bx2

2 + cx2
3 + dx2

4. Perhaps the final word on the
subject of forms which represent all positive
numbers has been given very recently by Con-
way and Schneeberger, who have provided the
following elegant characterizations.

Theorem [2]. If a positive integer–matrix qua-
dratic form represents each of 

1,2,3,5,6,7,10,14,15,

then it represents all positive integers.

Conjecture. If a positive integer–valued qua-
dratic form represents each of

1,2,3,5,6,7,10,13,14,15,17,19,21,22,

23,26,29,30,31,34,
35,37,42,58,93,110,145,203,290,

then it represents all positive integers.
These statements are sharp in the sense that

the form x2
1 + 2x2

2 + 5x2
3 + 5x2

4 represents all
numbers but 15, while 4x2

1 + x1x2 + x2
2+

x2x3 + 2x2
3 + 29x2

4 + 29x4x5 + 29x2
5 represents

all but 290. They expect that their conjecture will
soon be a theorem.

In his paper [16] Ramanujan also introduces
the problem of finding the ax2

1 + bx2
2 + cx2

3 + dx2
4

that represents all sufficiently large integers, a
problem he refers to as being much more diffi-
cult and interesting. This problem was essen-
tially solved by Kloosterman [14] in 1926. Kloost-
erman's paper represents a major breakthrough,
for in it he refined the circle method in a way
that allowed him to obtain a qualitative result
about representations by quaternary forms from
a certain estimate for what is now known as a
Kloosterman sum. In its simplest incarnation
this is the finite sum

K(n,p) =
p−1∑
d=1

e2πin(d̄+d)/p

for prime p and integral n not divisible by p,
where d̄ is the multiplicative inverse of d mod-
ulo p. Kloosterman's estimate, which was enough
for the application to quaternary quadratic
forms, was later superceded by Weil's best pos-
sible estimate

|K(n,p)| ≤ 2
√
p

obtained as a consequence of the Riemann Hy-
pothesis for curves.

Ramanujan's paper has also stimulated much
work on the still-more-difficult theory for ternary
forms. In a footnote he wrote that the even num-
bers which are not of the form x2 + y2 + 10z2 are
the numbers 4λ(16µ + 6), while the odd num-
bers that are not of that form, viz.,

3,7,21,31,33,43,67,79,
87,133,217,219,223,253,307,391 . . .

do not seem to obey any simple law. Dickson
confirmed the observation about even numbers
by a simple argument, but the problem of
whether there are infinitely many odd numbers
that are not represented remained open until re-
cently. It follows from [10] that

Theorem. The set of odd numbers not repre-
sented by Ramanujan's form

x2
1 + x2

2 + 10x2
3

is finite.
Once again, the proof of this result does not yield
an explicit bound for the number of exceptions.
Actually, Ramanujan's list of exceptions is not
complete and two more exist: 679 and 2,719. In
an impressive recent paper, Ono and Soundarara-
jan [15] have shown that if one assumes certain
Riemann Hypotheses, then these are actually
all.

The Problem of Representation
The above examples belong to the general prob-
lem of understanding which positive integers n
are represented by a given integer–valued pos-
itive form Q(x1, . . . , xm) for integral vectors x,
how many such vectors there are, and how these
vectors are distributed.

A necessary condition for the integral solv-
ability of n = Q(x) is that the congruence
Q(x) ≡ n(mod q) have a solution for all positive
integers q or, in other words, that n be repre-
sented over the p-adic integers for all p. The local
representability of n by Q(x) , that is, the solv-
ability of these congruences, does not in general
guarantee the existence of an integral solution
to Q(x) = n unless we replace the individual
form by a certain equivalence class of forms, the
genus. The notion of a genus of forms was first
introduced by Gauss in the binary case. To de-

4Ten years later Dickson [5] observed that one of them,
the form corresponding to (1,2,5,5), does not represent
15, but proved that otherwise Ramanujan was correct,
in particular about the rules for the special ternaries.
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fine it, first say that two forms Q1 and Q2 are
equivalent over Z if there is a U ∈ GL(m,Z) so
that UtA1U = A2 for the associated matrices.
Two (positive) forms Q1 and Q2 are said to be-
long to the same genus if, for each q, Q1 is
equivalent over Z to a form which is congruent
modulo q to Q2. Another way of saying this is
that Q1 and Q2 are equivalent over the p-adic
integers for all p. Two forms equivalent over Z
represent the same integers, so for questions of
representation one may consider as basic objects
Z -equivalence classes of forms. It is an impor-
tant fact that a genus of forms consists of only
finitely many Z -equivalence classes. The fol-
lowing result shows the importance of this con-
cept for us.

Theorem [1]. If, for every q, the congruence
Q(x) ≡ n(modq) has a solution, then some form
in the same genus as Q(x) represents n inte-
grally.

Although local representability seems to in-
volve infinitely many congruences, in fact it suf-
fices to take a single value of q depending on
the determinant D = det 2A and possibly n. If
the genus happens to consist of a single class,
then this theorem provides a most satisfactory
answer to the question of which integers are
represented. This is quite rare, however, and it
cannot happen if m or D is too big. Ramanujan's
form x2

1 + x2
2 + 10x2

3 is in a genus consisting of
two classes, the other being represented by
2x2

1 + 2x2
2 + 3x2

3 − 2x1x3. Thus, although it may
be clear which integers are represented by at least
one form in the genus, the difficulty is in deciding
which. Despite this, one might hope that differ-
ent forms in the same genus tend to represent
the same integers. This is not true for binary
forms, whose deeper representation properties
comprise a part of class field theory and will not
be considered here. It is essentially true for
forms in three or more variables, and we will at-
tempt to make that more precise and point out
the special obstacles that arise for quaternary
and ternary forms.

The Analytic Approach
A natural approach is to turn to the problem of
counting the number of representations. The
power of analysis enters this problem through
the theta series

ϑ(z) =
∑
α∈Zm

e(zQ(α)) =
∑
n≥0

r (n)e(nz)

where e(z) = e2πiz ,  which is a generating
(Fourier) series for the number of representations
r (n) = rQ(n) = #{α ∈ Zm;Q(α) = n}. This is seen
by collecting together the terms in the first sum
with the same value of Q(α).

Jacobi was the first to exploit theta functions
for representation problems. For Q4(x) =
x2

1 + x2
2 + x2

3 + x2
4, for example, he gave the nice

identity

ϑ(z) = 1 + 8
∑
n≥1

ne(nz)
1 + (−1)ne(nz)

obtained by using the theory of elliptic functions.
By expanding each term in the sum as a geo-
metric series and then collecting together the co-
efficients of e(nz) , it can be seen that the num-
ber of representations of n as a sum of four
squares is eight times the sum of those divisors
of n which are not multiples of four. In partic-
ular, it is never zero!

A theta series defines a holomorphic function
on the upper–half plane H having the real line
as a natural boundary. While its Fourier coeffi-
cients encode the integral representation prop-
erties of Q(x) , its behavior near the rational
points encodes the local representation prop-
erties of Q(x). The basic idea of the circle method
is to approximate ϑ(z) by a function with simi-
lar behavior at the rational points a/c and then
compare Fourier expansions. This idea leads
one to attempt to approximate r (n) for n > 0 by
an infinite series

ρ(n) = cQ nm/2−1
∑
c>0

Ac (n) (1)

where Ac (n) is a certain finite exponential sum
and cQ is a positive constant depending on the
form Q .

This series is called the singular series, since
it arises from the rational singularities of ϑ(z).
It has a remarkable relation with the local solv-
ability of Q(x) = n. Let r (n, q) be the number of
solutions of the congruence Q(x) ≡ n(modq). It
is shown that there is a product representation∑
Ac (n) =

∏
p αp(n) where αp(n) is the p-adic

density of representation which is given by the
stabilizing limit αp(n) = limq=pk→∞ r (n, q)/qm−1.
The series and product converge (absolutely if
m > 3) to a nonzero limit exactly when we have
local solvability.

In general, the analytic approach to the prob-
lem of integral representation is to write

r (n) = ρ(n) + a(n)

and try to estimate a(n) from above and ρ(n)
from below when it is not zero.

It turns out that the only obstruction to ρ(n)
being essentially as large as nm/2−1 when it is
not zero is the possible existence of primes p
for which Q(x) does not represent zero p-adi-
cally, which means that for some a ,
Q(x) ≡ 0(modpa) implies that x ≡ 0(modp) . No
such p exists when m > 4 , so one has
ρ(n) ≥ cnm/2−1, for some positive constant c,
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when it does not vanish. (It is conventional in an-
alytic number theory to write this as
ρ(n) � nm/2−1, the positive constant c then
being referred to as the implied constant.) For
m = 3 and m = 4 such pmay exist, but they are
readily determined divisors of D. If we restrict
the powers to which such primes divide n, then
for ρ(n) 6= 0 we have the bound
ρ(n) � n/ log(logn) when m = 4, and for any
ε > 0 the bound ρ(n) � n1/2−εwhen m = 3. The
latter is a consequence of a theorem of Siegel [21]
and is noneffective in the sense that no way of
specifying the implied constant for a given ε > 0
is known. This is the origin of the noneffectiv-
ity in our applications to ternary forms, and to
remove it is a major unsolved problem in num-
ber theory. If one assumes the Riemann hy-
pothesis for Dirichlet L-functions, then an ef-
fective lower bound can be given for the case
m = 3.

As for upper bounds for a(n), the circle
method quickly yields the bound |a(n)| � nm/4,
and this is enough to give the following result
of Tartakowsky.

Theorem [22]. For forms in five or more vari-
ables, every sufficiently large number n that is
represented (mod D) is integrally represented.

For m = 4 the above bound for |a(n)| no longer
suffices (just), and it is here that Kloosterman
made his breakthrough by improving the esti-
mate for a(n) and thus extending the above the-
orem to quaternary forms, provided that the
powers to which certain primes divide n are re-
stricted or that only primitive representations are
considered. The (primitive) representation the-
orem for forms in four or more variables has also
been proved using algebraic methods (see [1]).
For ternary forms a deeper barrier exists, and to
overcome it so far only the analytic approach has
been fully successful. To this end it is natural
to exploit the relation between quadratic forms
and modular forms.

Fourier Coefficients of Modular Forms
The central role of modular forms in the study
of quadratic forms, after being hinted at by
Hardy and Ramanujan, was made very clear by
Hecke and Siegel. This is based on the fact that
the theta function ϑ(z) satisfies the transfor-
mation rule (for γ ∈ Γ, a certain congruence sub-
group of the modular group)

ϑ(
az + b
cz + d

) = χ(γ)(cz + d)m/2ϑ(z),

γ =

(
a b
c d

)

for a certain multiplier χ(γ), which may be given
explicitly. The same is true for the function 

E(z) =
∑
n≥0

ρ(n)e(nz), ρ(0) = 1,

which has by construction the same behavior as
the theta function at the rationals. This means
that the difference f (z) = ϑ(z)− E(z) =∑
n≥1 a(n)e2πinz is a holomorphic function on

H that satisfies the same transformation rules
but which has the property that the function
ym/4|f (z)|, which is well defined on the quotientΓ\H, is bounded there. In other words, f (z) is
a cusp form of weight m/2. The problem of
bounding a(n) from above is the problem of
bounding a Fourier coefficient of a cusp form.
The mere boundedness of ym/4|f (z)| is enough
to give the estimate a(n) � nm/4, which is also
the trivial bound from the circle method. It was
found independently by Rankin, Selberg, and
Petersson that there is an elegant reformulation
of the circle method based on Poincaré series and
simple L2 theory which encompasses the re-
finement made by Kloosterman. It gives the fol-
lowing estimate, which invites comparison with
the singular series (1):

|a(n)|2 � nm/2−1
∑
c>0

c−1K(n, c) J(n/c). (2)

Here K(n, c) is the Kloosterman sum

K(n, c) =
∑
χ(γ)e(n(a + d)/c),

the sum being over γ ∈ Γ with 0 ≤ a, d < c , and
J is a Bessel function, of which the Kloosterman
sum is a finite version. Now the Kloosterman sum
is over roughly c terms, and any bound of the
form K(n, c) � c1−δ with δ > 0 yields, upon
splitting the sum in (2) at c = n and using
J(x) �min(xm/2−1, x−

1
2 ) ,  the estimate a(n)

� nm/4−δ/2. For even m the multiplier χ = 1
and each Kloosterman sum which occurs in (2)
can be written

K(n, c) =
∑

d(modc),(c,d)=1

e(n(d̄ + d)/c)

where d̄ is the multiplicative inverse of d mod-
ulo c. For its estimation Kloosterman showed
that one may take any δ < 1/4, and later Weil
showed that one may take any δ < 1

2 as a con-
sequence of the Riemann Hypothesis for curves,
this result being best possible. For m odd the
multiplier χ 6= 1 and this circumstance actually
allows any δ < 1

2 to be obtained rather easily, as
Salié observed.

Another way to get a nontrivial bound for
a(n) is by the Rankin-Selberg method [20]. For
even m (i.e., integral weights) the problem of es-
timating a(n) was completely solved by Deligne
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[3] when he proved the Ramanujan conjecture
(formulated by Ramanujan in just our context
in terms of Q24!) giving a(n) << nm/4−1/2+ε.

It is perhaps less well known that for odd m–
that is, for the half-integral weight m/2– the
same bound is conjectured to hold for square-
free n. This half-integral weight Ramanujan con-
jecture is open, but it does follow from the Rie-
mann Hypothesis for certain global L-functions.
Until 1987 the best-known estimate for odd m
was that corresponding to Weil's bound for
Kloosterman sums:

a(n) � nm/4−1/4+ε.

Any improvement of this is precisely what is
needed for the representation problem for
ternary forms, since the exponent
m/4− 1/4 = 1/2 just fails to beat the lower
bound of Siegel for the singular series. In 1987
a breakthrough was made by Iwaniec [12] in the
half-integral weight case. In this paper he suc-
ceeded in reducing the exponent m/4− 1/4 for
odd m > 3 and square-free n. Shortly there-
after, his methods were extended to cover the
case m = 3, and applications to ternary qua-
dratic forms, both definite and indefinite, were
made [6, 7]. An excellent exposition of Iwaniec's
method is given by Sarnak in [18].

In fact, there exist cusp forms of weight 3/2
that attain the bound |a(n)| ≥ cn1/2, but they are
supported on finitely many square classes. This
new difficulty was discovered in the context of
the quadratic forms by Jones and Pall [13]. The
concept of spinor genus was used to identify
these pseudo-cusp forms locally in [19], and a
spinor genus version of the representation the-
orem for ternary forms is given in [10]. The fol-
lowing is an easily stated corollary.

Theorem. Every sufficiently large square-free in-
teger that is represented by a ternary form (mod
D2 ) is integrally represented.

To reiterate, there is no known way to estimate
effectively the largest possible exception with-
out assuming certain Riemann hypotheses. This
result was conjectured by Ross and Pall [17] and
also by Watson [23]. Watson established several
interesting results about the integers that are lo-
cally represented but not integrally represented
by a ternary form.

As alluded to earlier, a rather different ap-
proach to the ternary representation problem is
possible by relating the Fourier coefficients to
special values of L-functions. After the funda-
mental work of Shimura and Waldspurger, re-
ducing the Weil exponent for the Fourier coef-
ficients amounts to breaking convexity for a
twisted automorphic L-function. In this context,
breaking convexity means reducing the estimate

provided by the functional equation and the
Phragmén-Lindelöf theorem for the size of the
L-function at the central critical point in terms
of the twist. The papers [8] do break convexity
for these L-functions as well as others and thus
yield new proofs of the ternary representation
theorems. Yet another approach has been given
in [9].

The third aspect of the problem of represen-
tation entails understanding the way in which the
representing vectors x are distributed on the el-
lipsoid Q(x) = n and in arithmetic progressions
to a fixed modulus. This is what is needed, for
example, to prove results about representing
numbers as sums of polygonal numbers. The
methods described in this article also apply to
this distribution problem, for the appropriate
harmonics needed to detect such distribution
may be built into the theta series. Roughly speak-
ing, the general result is that, even when re-
stricted to certain progressions, the represent-
ing vectors become uniformly distributed on
the ellipsoid Q(x) = n as n gets large, provided
they are numerous enough. For references on the
distribution aspect of the representation prob-
lem and details on the ternary case, the reader
may consult [10].
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