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ABSTRACT

Refining the notion of regularity introduced by Dickson, an integral quadratic form is said to be spinor
regular if it represents all integers represented by its spinor genus. Examples of positive definite primitive
integral ternary quadratic forms which have this property are presented, and it is proved that there exist
only finitely many equivalence classes containing such forms.

Introduction

In terminology introduced by Dickson in 1927 [5], a positive definite integral
ternary quadratic form is said to be regular if it represents all natural numbers not
excluded by congruence considerations; that is, it represents all integers represented
by its genus. An historical survey of the search for such forms can be found in [7],
along with pertinent references to the original literature. In the present paper, a
refinement of the notion of regularity, called spinor regularity, is introduced, it is
proved that there exist only finitely many equivalence classes of positive definite
primitive integral ternary quadratic forms which have this property, and all such
forms are determined which lie in genera containing multiple spinor genera and have
discriminant less than 2000. A form is said to be spinor regular if it represents all
integers represented by its spinor genus; in particular, every regular form is spinor
regular.

In [13, 7], new regular forms were found through the utilization of spinor genus
theory to analyse the representation properties of the forms in the table of Brandt and
Intrau [4]. The work to be presented in this paper constitutes a completion of this
application of the spinor genus theory. An exhaustive search was conducted to
determine all forms in [4] which are spinor regular and lie in genera containing
multiple spinor genera. This search resulted in the discovery of one previously
unknown regular form (of discriminant 864), and eleven spinor regular forms which
are not regular, of which one (also of discriminant 864) lies in a spinor genus
containing more than one equivalence class. Details appear in Theorem 1.

A key step in the analysis carried out consists of the separation of classes within
a genus into spinor genera. As there are no known invariants which distinguish
between forms in different spinor genera, the method used here utilizing rep-
resentation measures for this separation may be of some independent interest. This
method, which is described and illustrated in §2, involves only simple machine
computation and is efficient for genera of the size encountered in this project.
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This paper represents an extension of previous work of two of the authors. In [1],
the notion of spinor regularity was defined, the examples presented here in §3 were
discovered, and a search was conducted for spinor regular positive definite primitive
integral ternary quadratic forms in genera containing multiple spinor genera, at most
four equivalence classes, and having discriminant less than 2000. All regular forms in
genera satisfying the same restrictions but containing at most three classes were
determined in [7].

1. Preliminaries

The purpose of this section is to recount some basic facts from the representation
theory of spinor genera. While many of the results to be mentioned here can be
formulated in a more general context (for example, see [6, 12, 2]), we shall restrict to
integral ternary forms in order to make the general theory as concrete as possible. For
ease of reference to the original literature, the geometric language of quadratic lattices
will be adopted throughout this section. For this discussion, terminology and
notation will follow that of O’Meara’s book [11].

Let L be a Z-lattice of discriminant 4 on a non-singular ternary quadratic space
V with quadratic map Q and associated bilinear form B for which B(x, x) = Q(x)
for xe V. We further assume that L is integral, in the sense that B(x, y)eZ for all
x,ye L. Let Q denote the set of all prime spots on @, and let S be the subset of Q
consisting of the finite prime spots on @. Throughout the following discussion, it will
be assumed that ¢ is a non-zero integer satisfying

—cd¢ Q2. (1.1)
For peQ, define )
Nc(p) = {ﬂEQp:(ﬁs —Cd)p =1},

where (, ), 1s the p-adic Hilbert symbol.
Let J, denote the idele group of Q, and let P, and J§ be the subgroups of J, as
defined in [11, §101D]. Moreover, define a subgroup N, of J, by

N, ={jely:j,€N,p), for all peQ}.
Equivalently, N, = Ng,o(J;), where E = Q(v/(—cd)). The subgroup H,= N, P,J§
has index at most two in J, [10, 6]. An integer c is said to be a splitting integer for the

genus gen L if ¢ is represented by gen L and [Jy: H,] = 2 [2]. In the case of primary
interest in this paper, the splitting integers can be determined by the following result.

LEMMA 1. Assume that L is positive definite and that the integer c is represented
by gen L. Then c is a splitting integer for gen L if and only if ¢ satisfies (1.1) and

0(0*(L,)) = N(p) forallpes, (1.2)
where 8 denotes the spinor norm.
Proof. The necessity of (1.1) and (1.2) follows from the general theory [9, 6]. For

the sufficiency, suppose that (1.1) and (1.2) hold, but [J,: H] = 1. Then, in particular,
the principal idele (—1) lies in H,. So there exist aeQ*, jeN, and keJ§ such
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that (—a)=jk. It then follows from (1.2) that —aeN,/(p) for all peS; thus,
(—a,—cd), =1 for all peS. However, since both ¢ and d are positive by the
assumption of positive definiteness, we have (—a, —cd), =—1, giving a con-
tradiction to the Hilbert reciprocity law.

The significance of splitting integers in the next section hinges upon the next
result, the proof of which can be adapted from the arguments in [10, 6). While experts
in the field have surely been aware of this result for some time, it does not appear to
be explicitly stated in the literature. For the sake of completeness, it is stated here
without proof. For the statement, let (L, n) be the number of representations of the
integer n by the positive definite lattice L, and let

M(spnL,n) =} r(L',n)/|0*(L)],

the sum running over a complete set of representatives L’ of the classes in the spinor
genus spn L. We refer to #(spn L,n) as the representation measure of n by spn L.
Finally, let J, be the split rotation group of the underlying space V as defined in [11,
§101D].

PrROPOSITION 1. Let L be positive definite and let ¢ be represented by gen L. Then
A(spnZL,c) = A(spnL,c)

for all e J, such that 6(Z)e H,.

COROLLARY 1. If ¢ is not a splitting integer for gen L, then

A (spnK,c) = #(spnL,c)
for all Kegen L.

It follows from the proposition and the fact that [J,: H.] < 2 that if ¢ is represented
by L but not represented by every spinor genus in gen L, then it is represented by
exactly half of these spinor genera. In this case, ¢ is said to be a spinor exceptional
integer for gen L. Of course, conditions (1.1) and (1.2) are necessary for ¢ to be spinor
exceptional. In fact, when L is positive definite, ¢ is a spinor exceptional integer for
gen L if and only if c is represented by gen L and (1.1), (1.2) and

O(L,,c)=NJp) forallpeS (1.3)

are satisfied. That result, the definition and calculations of the groups 6(L,, c) appear
in [12}.

In the remainder of the paper, it will be convenient to use the terminology of
quadratic forms and quadratic lattices interchangeably. For an integer-valued ternary
quadratic form f = f(x,,x,,x;), the discriminant d=d(f) to be used is the
determinant of the matrix F = (0°f/dx,0x,). For such a form f; let clsf, spnf and
genf denote the equivalence class, spinor genus and genus of f, respectively. A lattice
L corresponding to the form 2f (in the sense of [11, §41]) is a quadratic lattice for

1-2
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which there is a Z-basis {e,, e,, e} in which (B(e,, e;)) = F. This L is a lattice having
integral scale, norm contained in 2Z, and discriminant d. When fand L are so related,
we shall write .#(spnf,a) for .#(spn L, 2a).

2. Separating a genus into spinor genera

One method which can be used in some cases to separate the isometry classes in
a ternary genus into spinor genera utilizes the partial character theory available when
there are sufficiently many spinor exceptional integers for the genus [2]. A general
computer-applicable method for this separation which is based on graph-theoretic
techniques is described in [3). In this section, a third method will be discussed which
is based on Corollary 1. It is this method which was used to analyse the larger genera
in the table of Brandt and Intrau [4] in order to produce the results to be described
in §3. In that table, representatives are listed for all of the classes within each genus
of positive definite primitive integral ternary quadratic forms of discriminant less than
2000. Let f,, ..., f, be such a list. For each form f,, a simple machine computation can
be used to calculate the numbers r(f,,)) of representations of the integers j from 1 to
n, for some convenient value of n, and to calculate the ratios r,(j) = r(f,/)/0o*(f),
where o*(f;) is the number of proper integral automorphs of f,. An analysis of how
such terms can be combined so that the representation measures within each spinor
genus are equal, in accordance with Corollary 1, then leads to the desired separation
into spinor genera.

In order to illustrate the method described above, consider one of the genera of
largest class number encountered in [4] which contains two spinor genera, namely the
genus ¥ of discriminant 1998 and class number 10 containing the form

f=x24+y* 433322 4 xy.

For convenience, representatives f = f,, ..., f;, of the ten classes in this genus are listed
in Table 1, along with the numbers of proper automorphs of each.

TABLE 1. Representatives of classes in the genus 4
S o*(f)

x2+y24+33328 +xy
x2+3y%+84z%+3yz
x24+9y%+282% + xz
x2+9y2+3022 +9yz

X+ 12p2+212°+3yz

x4+ 16y2+192°— 13yz + xz 4+ xy
Ix2 43y 43722+ 3xy

3x2+9y% + 1022+ 3xz
4x®+4y%+ 1622 —yz+xz+xy
4x?+ 7y + 928+ xy

-~
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For each of the forms f,...,f,,, the numbers of representations of j were
calculated for j=1,...,40. In Table 2, the resulting values r,(j) are listed for only
those integers j for which they are explicitly used in subsequent arguments.

To begin the analysis of the genus ¢, consider the lattice L corresponding to the
form 2f. A straightforward computation of the group index [J: Py+J§) shows that the
genus of L (hence also %) consists of two spinor genera, say & and &%,. If ¢ = 2a is
a splitting integer for gen L, then by condition (1.2), 8(0*(L,,)) = N,(37). By [9, Satz
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TABLE 2. Ratios ry)) for forms in §

i
j\ l 2 3 4 5 6 7 8 9 10
1 i L 1 1 1 ! 0 0 0 0
3 } 3 0 0 0 0 } } 0 0
4 1 3 L 1 1 1 0 0 2 1
10 0 0 [ I 0 0 0 1 0 1
12 } 3 0 0 I 0 1 3 0 1
18 0 0 I I 0 2 0 0 2 0
19 l I 0 0 0 2 0 2 2 2
21 1 1 0 0 3 3 1 1 3 3
28 1 3 1 0 2 2 0 I 1 1

3], 6(0*(L,,)) = Q,,. So (B, —cd),, =1 for all feQ,,. This forces —cdeQZ,, or,
equivalently, ae37©§,. Thus, it follows from Corollary 1 that A#(%, 2)) = #(F,, 2))
for all integers j listed in Table 2.

Proceeding now to the separation of classes into spinor genera, consider first the
representation measure of 18. As r,(18) = r,(18) = 1, r,(18) = r,(18) =2 and r,(18) = 0
for all other i, it follows that f; and f, are in opposite spinor genera, as are f; and
J. Similarly, by considering the values r,(19), one obtains that f; and f,, are in
opposite spinor genera, as are f; and f,. Using this information and the values r,(21),
it further follows that f; and f,, are in opposite spinor genera, as are f, and f;. So to
this point it has been established that f; and f; lie in one spinor genus, while £, and
J1o lie in the opposite spinor genus. Now, the contributions to .#(spnfj, 12) by f, and
Js sum to 3, while the contributions to .#(spnf,, 12) by f, and f,, sum to {. In order
for #(spnf;, 12) to equal #(spnf,, 12), f, must lie in spnf; and f, must lie in spnf,.
Next, the contributions to .#(spnf;,4) by f,, f; and f; sum to 3, the contributions to
A (spnf,,4) by f,, f, and f,, sum to 3, and each measure receives a contribution of }
from f, and f,. Consequently, f,espnf, and f;espnf,. Finally, the sum of contri-
butions to #(spnf,,28) by the known forms in spnf, is 5, while for .#(spnf,, 28)
the sum is 6. Thus, f,espnf, and f, espnf,. This yields the desired separation

spnf, = {clsf},cls f;, cls £, cls fy, cls £},
spnf, = {cls f,, cls f,, cls fg, cls 3, cls £}

3. Spinor regular forms

An integral quadratic form (or lattice) or a spinor genus of such forms (or lattices)
is said to be regular, in the sense of [5], if it represents all integers represented by its
genus. This definition of a regular spinor genus differs somewhat from that in [2]. A
form (or lattice) is said to be spinor regular if it represents all integers represented by
its spinor genus. In this terminology, a form (or lattice) is regular if it is spinor regular
in a regular spinor genus. If a spinor regular form lies in a spinor genus containing
more than one class, it will be referred to as non-trivially spinor regular.

RemArks. For indefinite forms of rank exceeding two, the class and spinor genus
coincide (for example, [11, 104: 5]); hence, all such forms are trivially spinor regular.
For arbitrary forms of rank exceeding three, every spinor genus is regular (for
example, [6]).
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The main result of this section is the following.

THEOREM 1. Let f be a positive definite primitive integral ternary quadratic form
of discriminant d < 2000. Further assume that the genus of f contains more than one

spinor genus. Then [ is spinor regular if and only if f is equivalent to one of the regular
forms listed in [7, Theorem 3] or to one of the following forms:

(d = 128), 2x%+2y% + 528+ 2pz + 2xz, 3.1

(d = 216), 3x243y%+4z8 + 3xy, (3.2)
(d = 216), 3x*+4y*+4z8 +4yz+ 3xy, (3.3)
(d=256), x*+4y*+9z%+4yz, (3.4)
d=512), 4x*+4y*+52+4xz, 3.5)
d=512),  2x*+5y2+822+4yz+2xp, (3.6)
d=648), x*+Ty*+122%+xy, 3.7)
(d = 686), 2x2+Ty*+82% + Tyz + xz, (3.8)
(d = 864), x4 3y% 4+ 372% 4+ 3yz + xz, (3.9)
(d = 864), 3x2+Ty*+ 722 =2z + 3xz+ 3xy, (3.10)
(d = 864), 3x2+4y*+922, (3.11)
(d=864), 4x>+4y2+9:2+4xy. (3.12)

Of these, only (3.9) is regular.

As a first step in proving this theorem, the spinor regularity of two forms in the
list will be established.

PROPOSITION 2. The form (3.9) is regular, and the form (3.10) is non-trivially
spinor regular, but not regular.

Proof. These forms lie in the same genus; from [4], representatives of the four

classes in this genus are

g, =x*+y*+1442° —xy,

g, = x*+3y*+372°-3yz—xz,

8y = 3x3+ Ty + 72+ Syz + 3xz + 3xy,

g, = 3x*+3y*+ 162> —3xy.
Of these, g, and g, lie in one spinor genus ¥}, and g, and g, lie in another spinor genus
&#,. Spinor exceptional integers for the genus are of the form m?; clearly, all such
integers are represented by g,. Thus, & is a regular spinor genus. However, 1 is not
represented by %, so %, is not a regular spinor genus.

To show that g, is spinor regular, it suffices to show that g, represents every
integer represented by g,. This follows immediately from the equations

8:(x,9,2) = g(—x+3y+z,3y+2,22) (3.13)
= g,(@x—y+2z,3x+2,22) (3.14)
= g(—px—w+z,px—py+2,22). (3.15)
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For, if a is represented by g,, there exist x, y, ze Z such that a = g,(x, y, 2). If x is even,
then (3.14) gives a representation of a by g,; if y is even, then (3.13) gives a
representation of a by g,; if both x and y are odd, then (3.15) gives such a
representation. As g, is spinor regular in a regular spinor genus, it follows that g,, and
thus (3.9), is regular.

The spinor regularity of g,, and thus (3.10), follows from an analogous argument
using the equations

84(x,9,2) = go(x—y+2, —3y—2,39—2)
=gy(—gx+y+z, —gx—z,5x—2)

=gGx+¥y+z, —x+pp—z,ix—1y—2).

Proof of Theorem 1. By the assumption that only those genera containing
multiple spinor genera are considered, we are restricted to the discriminants in the list
appearing in [7, p. 235], with the correction that 1280 should be deleted from that list
and 1372 added. For the remainder of the proof, we shall consider only genera having
one of these discriminants d. For each such genus containing multiple spinor genera,
the number of spinor genera is two. Representatives of all classes within these genera
were obtained from the table [4], and these classes were separated into spinor genera
through a combination of the techniques described in the previous section.

In those genera having class number 4 =2, forms in both classes are trivially
spinor regular. Of these, the ones which are in fact regular appear in [7, Theorem 3],
and those classes which are not regular have representatives (3.1), (3.2), (3.3), (3.5),
(3.11) and (3.12). Genera with & = 3 occur for d = 162, 256, 486, 648, 686 and 1944,
In these cases, one spinor genus necessarily contains a single class, which is again
trivially spinor regular. Among these classes, those which are regular appear in [7,
Theorem 3], while those which are not regular have representatives (3.4), (3.7) and
(3.8). The fact that there are no spinor regular forms in the opposite spinor genera
which contain two classes each is easily established by producing integers represented
by one class but not the other. Genera with A = 4 occur for d = 378, 512, 640, 648,
864 (two genera), 1024, 1152 (two genera), 1512 and 1944. Of these genera, all
separate into two spinor genera of two classes each, with the exception of one genus
having d= 512. That genus has one spinor genus containing only one class,
represented by (3.6). This form fails to represent 1, so it is spinor regular, but not
regular. Of the classes in the remaining genera, all except the ones represented by (3.9)
and (3.10) can be eliminated by producing integers represented by one class, but not
the other, in the spinor genus. Details of the splittings into spinor genera of the genera
of class number 4 can be found in [1].

No spinor regular forms in the scope of [4] occur in genera with 4 > 5 and two
spinor genera. Of the genera which need to be investigated, & = S occurs for d = 486,
1372 and 1944, h = 6 occurs for d = 702, 1024, 1026, 1350 (two genera), 1512 and
1664, h = 7 occurs for d = 1134, h = 8 occurs for d = 1674 and 1944, and h =10
occurs for d = 1458 and 1998. In all cases, the occurrence of spinor regular forms is
ruled out by finding integers represented by the spinor genus, but not by the
individual form. As all cases follow similarly, we give the computations only for the
genus ¢ of discriminant 1998 described in §2. As observed there, no integer less than
37 can be spinor exceptional for ¢ (in fact, ¢ has no spinor exceptional integers). The
desired conclusion then follows from an investigation of the computer-generated
representation numbers. It can be seen from Table 2 that the integers 1, 3 and 10 are
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represented by at least one form in ¢, but f,, f;, f, and f, fail to represent 1; f;, f,,
/5 and f; fail to represent 3; and f, and f, fail to represent 10. Thus, no form in ¥ is
spinor regular.

One additional example outside the range of [4] of a form which is non-trivially
spinor regular is given in the next proposition.

PROPOSITION 3. The form f= 9x*+16y*+48z® of discriminant 55,296 is non-
trivially spinor regular, but not regular.

Proof. The form lies in the genus of class number 4 containing the form
x®+48y%+ 14422, which was proved to be regular by Jones and Pall [8). This genus
contains two spinor genera of two classes each. A representative for the other class
in the spinor genus of fis

g = 16x*+25y%+ 25z + 14yz + 16xz + 16xy.
The spinor regularity of f follows from the equations
80, 3,2) =fy—z, x+{+iz, —p—12)
=fo—zx+y+z, —)
=fy—z,3x+y+3z, —§x+3y+32).

That f'is not regular follows from the obvious fact that f fails to represent 1.

4. A finiteness result

Let & denote the collection of all positive definite primitive integral ternary
quadratic forms. In this section, a finiteness theorem of Watson [14], for the number
of classes of forms in & which are regular, is extended to those forms which are spinor
regular. For this purpose, it is convenient to introduce some additional notation. For
a subset X of &, let R(X) be the set of all integers represented by at least one form
in X, and for a positive real number £, let

R(X) = (¢ R(X):0 < & < &}.
For fe #, let

E(f) = R(gen/)\R(f),  E(spnf) = R(genf)\R(spn f),

SE(f) = R(spn/)\R(/).

Define E(f) = R(gen/)\R,(f), and define E,(spn /) and SE,(f) analogously. Note
that

and

SE/(f) = E{f)\Espn f). 4.1)

For fe #, an asymptotic lower bound for |[SE(f)| in terms of the discriminant d of f
will be established, from which the desired finiteness result will follow.

LeEMMA 2. For any positive real number & and any fe & of discriminant d,

|E(spnf)| < 2039,

where w(2d) is the number of distinct prime divisors of 2d.
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Proof. 1If ae E(spnf), then 2a is a spinor exceptional integer for the genus of the
lattice L corresponding to 2f. For primes p f 2d, 6(0*(L,)) = up@f, [11, 92: 5}, so it
follows from condition (1.2) that ord,,(2a) = 0 (mod 2). Thus, any prime g for which
ord,(a) = 1 (mod 2) must be a divisor of 2d. So the integers in E(spnf) lie in at most
2@ gquare classes, and the lemma follows.

LEmmA 3. For any é > 0 and sufficiently small ¢ > 0
ISE-an()] > di-o2-

for all fe F of sufficiently large discriminant d.

Proof. For any &> 0, 2% < 1(2d) = O(d°), where 1(2d) is the number of
positive divisors of 2d. So, by Lemma 2,

|E-ss(spnf)| = O(d+/°). 4.2)
For sufficiently large d, by [14],
|E i-as(f)| > d*=0%¢, 4.3)
The lemma now follows from (4.1), (4.2) and (4.3).

The desired asymptotic lower bound for |SE(f)| now follows immediately from
Lemma 3.

THEOREM 2. For any § > 0, |SE(f)| > d*~° holds for all fe F of sufficiently large
discriminant d.

As f'is spinor regular if and only if |SE(f)| = 0, we obtain the following.

COROLLARY 2. There exist only finitely many equivalence classes of spinor regular
positive definite primitive integral ternary quadratic forms.
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