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1 Hi There

This all must go back to people such as Legendre, Dirichlet, and Gauss. I
have no idea, really.

We use 〈α, β, γ〉 to denote the (positive) binary quadratic form f(x, y) =
αx2 + βxy + γy2. The discriminant ∆ is given by ∆ = β2 − 4αγ and so is
negative for positive forms. We insist that our forms be primitive, that is
gcd(α, β, γ) = 1.

For discriminant ∆ = −23, the entire class group

H(−23) = {〈1, 1, 6〉, 〈2, 1, 3〉, 〈2,−1, 3〉}

has only three elements, written h(−23) = 3.
There is an binary operation called composition that takes two primi-

tive forms of the same discriminant to a third. Composition is commuta-
tive and associative, and makes the set of forms into a group, with identity
〈1, 0,−∆/4〉 for even discriminant and 〈1, 1, (1 − ∆)/4〉 for odd.

From page 49 of Buell [1]: if a form 〈α, β, γ〉 represents a number r
primitively, that is r = αx2 + βxy + γy2 with gcd(x, y) = 1, then the form
can be rewritten as (‘is equivalent to’) some 〈r, s, t〉 of the same discriminant,
still primitive.

From page 64 of Buell [1], the Shanks algorithm: if a form f1 primitively
represents a number a1 and a form f2 of the same discriminant primitively
represents a number a2, then the composition f1 ◦ f2 does represent a1a2 but
perhaps not primitively.

Indeed, from pages 55-57 of Buell [1]: suppose f1 = 〈a1, b1, c1〉 and
f2 = 〈a2, b2, c2〉 are “united” in the sense of Dirichlet, that is gcd(a1, a2, (b1 +
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b2)/2) = 1. Then (Prop. 4.5) there exist integers B, C such that f1 ∼
〈a1, B, a2C〉 and f2 ∼ 〈a2, B, a1C〉. Furthermore,

f1 ◦ f2 ∼ 〈a1a2, B, C〉

which means that a1a2 is represented primitively by f1 ◦ f2.
So this is the most favorable aspect of the picture: if two numbers are

represented primitively by primitive united forms, then the product of the
numbers is represented primitively by the composition of the forms, itself
primitive. Kind of a semigroup homomorphism.

In particular, if the identity form 1 ∼ 〈1, ⋆, ⋆⋆〉 represents a prime number
p that does not divide the discriminant ∆, then 1 ∼ 〈p, b1, c1〉 and 1 ∼
〈p,−b1, c1〉 as the identity is ambiguous. Note that p does not divide b1. Given
some f2 = 〈a2, b2, c2〉, if (b1 + b2)/2 ≡ 0 mod p, then (b1 − b2)/2 6= 0 mod p.
Either way, f2 and at least one version of 1 are united forms, 1◦ f2 = f2, and
so f2 primitively represents pa2.

2 Quickie

Theorem: Suppose some form f primitively represents the product mn with
gcd(mn, ∆) = 1. Then f is the composition of primitive forms g and h, where
g primitively represents m and h primitively represents n.

Proof: f ∼ 〈mn, β, γ〉, with gcd(mn, β) = 1, so gcd(m, β) = 1 and
gcd(n, β) = 1.

Define g = 〈m, β, nγ〉 and h = 〈n, β, mγ〉, since gcd(m, β) = 1 and
gcd(n, β) = 1 the two forms are primitive.

By Dirichlet’s description of composition, page 57 of Buell [1], we have

g ◦ h ∼ f.

3 Prime p represented by the identity

Here we wish to allow common divisors, but insist one form in the composi-
tion be the identity. We insist

∆ ≤ −11,

so that the identity form does not represent the prime 2. Note that for indef-
inite forms, the prime two is represented by the identity form in arbitrarily
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high discriminant, so we are throwing all those out. May not matter, I just
don’t want to think about it.

Lemma: With ∆ ≤ −11, if the identity form represents a prime p such
that p|∆, then for even discriminant, p = −∆/4, but for odd discriminant,
p = −∆.

Proof: For even ∆, we have p = x2+Dy2 where D = −∆/4, and ∆ ≤ −11
implies D ≥ 3. If y = 0 then x2 + Dy2 is not prime anyway. So y 6= 0 and
p = x2 + Dy2 ≥ D ≥ 3. So p is not 2, and p| − 4D means p|D. So p ≤ D as
well and p = D = −∆/4.

For odd ∆, we have p = x2 + xy + ky2 where k = (1 − ∆)/4. Note first
that with x = 1 and y = −2, x2 +xy + ky2 = 4k− 1. Next, ∆ ≤ −11 implies
k ≥ 3. In p = x2 +xy + ky2, if we had y = 0 we would get p = x2 which does
not result in a prime. So y 6= 0 and p = x2 + xy + ky2 ≥ (4k − 1)/4. But
p, x, y are integers so p = x2 + xy + ky2 ≥ k. Meanwhile p|4k − 1 = −∆.

If k 6= 1 mod 3, then 4k − 1 6= 0 mod 3. So the smallest possible divisor
of 4k − 1 other than 1 is 5, and the largest possible divisor of 4k − 1 other
than 4k − 1 itself is (4k − 1)/5. However p ≥ k > (4k − 1)/5. So here
p = 4k − 1 = −∆.

If k ≡ 7 mod 9, then 4k−1 ≡ 0 mod 9. Here 3 is a divisor, and (4k−1)/3
is a divisor, of 4k − 1, however (4k − 1)/3 is divisible by 3 and not prime.

If k ≡ 1 mod 3 but k 6= 7 mod 9, then (4k − 1)/3 is not divisible by
3. Let t = (k − 1)/3, so that (4k − 1)/3 = 4t + 1. Next, define the form
〈3, 3, t + 1〉. Note that 4t + 1 and therefore t + 1 are prime to 3. Now,
3x2 + 3xy + (t + 1)y2 = 4t + 1 = (4k − 1)/3 when x = 1 and y = −2.
As k ≥ 3, here k ≥ 4, and we find t = (k − 1)/3 ≥ 1. When k = 4,
〈3, 3, 2〉 ∼ 〈2, 1, 2〉 is not the identity. When k > 4, actually k ≥ 10 and
t ≥ 3, so 〈3, 3, t + 1〉 is reduced and is not the identity. All of which is to
say, when If k ≡ 1 mod 3 but k 6= 7 mod 9, if (4k − 1)/3 should happen to
be prime it is not represented by the identity. So p 6= (4k − 1)/3, either
p ≤ (4k − 1)/5 or p = 4k − 1, so p ≥ k implies p = 4k − 1 = −∆.

4 Division and prime p represented by the

identity

Theorem: Let the discriminant ∆ ≤ −11, let the prime p be represented
by the identity form 1 ∼ 〈1, ⋆, ⋆⋆〉, and let the product np be primitively
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represented by a primitive form f of the same ∆. Then f also primitively
represents n.

Case I: When ∆ 6= 0 mod p, we have

f ∼ 〈np, β1, γ1〉

and
1 ∼ 〈p, β2, γ2〉.

We have β2 6= 0 mod p, so if we have bad luck and (β1 + β2)/2 ≡ 0 mod p,
we merely switch (the identity form is ambiguous) β2 to −β2 to arrange
(β1 + β2)/2 6= 0 mod p.

So far we have gcd(p, np, (β1 + β2)/2) = 1. Then, by Prop. 4.5 in Buell,
there are integers B, C with

f ∼ 〈np, B, pC〉

and
1 ∼ 〈p, B, npC〉.

Meanwhile, the fact that f is primitive tells us that gcd(n, B, C) = 1.
Define the form

g = 〈n, B, p2C〉.

This is primitive as B 6= 0 mod p and gcd(n, B, C) = 1.
Compare

1 ∼ 〈p, B, n(pC)〉,

g = 〈n, B, p(pC)〉.

As usual, we get
1 ◦ g ∼ 〈np, B, (pC)〉

so that
1 ◦ g ∼ f.

So f, g are equivalent and f primitively represents n.
Case II: p|∆ and even ∆.

f ∼ 〈np, 2F, J〉

and
1 ∼ 〈1, 0, p〉.
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So ∆ = −4p = 4F 2 − 4npJ. Then p|F, and

f ∼ 〈np, 2pE, J〉.

∆ = −4p = 4p2E2 − 4npJ and nJ = 1 + pE2.

1 ∼ 〈p, 0, 1〉 ∼ 〈p, 2pE, 1 + pE2〉 ∼ 〈p, 2pE, nJ〉.

Define
g = 〈n, 2pE, pJ〉.

So
1 ◦ g ∼ 〈np, 2pE, J〉

and
1 ◦ g ∼ f.

So f, g are equivalent and f primitively represents n.
Case III: p|∆ and odd ∆, so ∆ = −p and 1 ∼ 〈1, 1, k〉.

f ∼ 〈np, F, J〉.

Again F ≡ 0 mod p, so
f ∼ 〈np, pE, J〉

with E odd. Meanwhile p2E2 − 4npJ = −p and 4nJ = 1 + pE2. With the
equivalence

(

1 0
−2 1

)

we find
1 ∼ 〈p,−p, k〉.

As E is odd,
1 ∼ 〈p, pE, nJ〉.

Define
g = 〈n, pE, pJ〉.

So
1 ◦ g ∼ 〈np, pE, J〉

and
1 ◦ g ∼ f.

So f, g are equivalent and f primitively represents n.
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5 Some applications

Corollary: if an integer n is represented by 〈2, 1, 3〉, then n is divisible by
some prime q = 2x2 + xy + 3y2.

Proof: First, perhaps n is not primitively represented. For example,
this must happen if n is divisible by any prime s with Legendre symbol
(−23|s) = −1. Well, no matter, divide the two variables by their gcd G and
divide n by G2. This factor m = n/G2 is represented primitively. It follows
that m is not divisible by any prime s with Legendre symbol (−23|s) = −1.
All remaining primes are 2, 3, 23, or p with (−23|p) = +1. If m is divisible
by any prime that is itself represented by 〈1, 1, 6〉, such as 23, the Theorem
of the previous section shows that 〈2, 1, 3〉 also divides m divided by that
prime. Repeat until no prime factors of shape 〈1, 1, 6〉 remain. As 〈2, 1, 3〉
does not represent 1, what is left has at least one prime factor, and all of its
prime factors are of shape 〈2, 1, 3〉. That is, m and the original n are divisible
by some prime q = 2x2 + xy + 3y2.

Corollary: if an integer n is not divisible by 2 or 3, and n is represented
by 〈4, 2, 7〉, then n is divisible by some prime q = 4x2 + 2xy + 7y2.

Proof: First, perhaps n is not primitively represented. For example,
this must happen if n is divisible by any prime s with Legendre symbol
(−108|s) = −1. Well, no matter, divide the two variables by their gcd G and
divide n by G2. This factor m = n/G2 is represented primitively. It follows
that m is not divisible by any prime s with Legendre symbol (−108|s) = −1.
All remaining primes are 2, 3, or p with (−108|p) = +1. But we were told
that m is not divisible by 2 or 3. If m is divisible by any prime that is itself
represented by 〈1, 0, 27〉, such as 31, the Theorem of the previous section
shows that 〈4, 2, 7〉 also divides m divided by that prime. Repeat until no
prime factors of shape 〈4, 2, 7〉 remain. As 〈4, 2, 7〉 does not represent 1,
what is left has at least one prime factor, and all of its prime factors are
of shape 〈4, 2, 7〉. That is, m and the original n are divisible by some prime
q = 4x2 + 2xy + 7y2.

Note that the primes 2 and 3 are not represented by primitive forms of
discriminant ∆ = −108. Instead they are represented by imprimitive 〈2, 2, 14〉
and 〈3, 0, 9〉. It is also worth pointing out the facts, easily checked, that
4x2 + 2xy + 7y2 6= 2 mod 4 and 4x2 + 2xy + 7y2 6= ±3 mod 9.
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