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CHAPTER 14

Simple Algebraic Considerations

1. Some results require only the definition of an algebraic number, namely,
that 6 is an algebraic number if it is the root of an equation, reducible or
irreducible, over the rational field Q,

07’. + alen-l + 020"—2 + A + aﬂ - 0,

where the a are rational numbers. Many of these results are classical and are
due to Euler and Lagrange.

The equation
ax? + by* = cz", 1)

where a, b, and c are integers.
Suppose first that » is odd. Consider the classical case when ¢ = 1.
Some integer solutions may be found by putting

z = ap® + bq°,
where p and ¢ are arbitrary integers, and taking
xVa+ yV—b = (pVa + gV —b)",
xVa—yV—b=((pVa—-qV-br

Then x, y are expressed as polynomials in p and g.

Occasionally as will be seen in Chapter 15 all the integer solutions may be
obtained in this way. The proof requires arithmetic theory.

Suppose next that » = 2m is even. Then unless a = 1 when a solution is
given above for all n, the question becomes more difficult. From Chapter 7,
it is seen that now the problem is to find integer solutions for X, Y of the
equation v

z" = AX? + BXY + CY?3

for a finite set of integer values of 4 and B.
These can be reduced to the form (1). Then if ¢ = ¢ + abcZ or ¢ =

" ac} + bci solutions may be found as before by factorizing c.

The equation

wh = TG+ 50 + 269), @
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112 DIOPHANTINE EQUATIONS
where 0 = 6,, 0,, 05 are roots of the equation
t3+at?+bt+c=0,

where a, b, c are integers.
A partial integer solution is given by

x + yb; + z6% = (p + g6, + ré3)",
x + y0; + 263 = (p + qb; + ré3)",
x + ybs + z6% = (p + g05 + ro3)",

w= ][]+ q0 + rt?,
[*]

where p, g, r are arbitrary integers and n runs through the integers.
The general solution depends upon the theory of algebraic numbers and is
connected with the units in an algebraic number field.

The equation \
22 = ax3 + bx%y + exy? + dy®, (3)
where a, b, ¢, d are rational numbers. ‘
All the rational solutions are given at once by putting x = pz, y =4
where p and g are arbitrary rational numbers. Finding the integer solutions
is a different matter. However, as shown by Lagrange, some integer solutions

are found without much difficulty when a, b, ¢, d are integers and a = 1. Let
6 = 6., 8, 6, be Toots of the equation, reducible or irreducible,

t2+bt2+ct+d=0.

Write 22 = (x — 0.)(x — 0,)(x — 05),

and x—ty=(p+gqt+r?? t=0,0,,0;,
"where p, g, r are integers. This implies that when we replace t3 by —bt? -
ct — d and t* by

—bt3 — ct2 — dt = —b(—bt? — ct — d) — ct® — dt,'
the coefficients of ¢2 in the ‘above must be zero. |
Hence g% + 2pr — 2qrb + r?}(b* — ¢) = 0

This gives an integer value for p if r(b> — ¢) is even and 2r | g% These con-
ditions are easily satisfied, for example, by r = 2r;, ¢ = 2r,q;. Clearly then
x,yand z = N(p + g8 + r6®) are integers.

The complete integer solution requires arithmetic theory and is given in
Chapter 25.
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2. The application of both quadratic and cubic irrationalities is sometimes
useful. This introduces many parameters satisfying a few equations, and so it
is not difficult sometimes to find particular solutions. A simple instance? is
given by

Theorem 1
The equation

Y2 —ax?=z% + bz + c, C))

where a # 0, and b, c are rational, has a two parameter rational solution.
Let 6 = 6,, 0,, 65 be the roots of the equation

t]+bt+c=0.
Put yExVa=T](p+q8 % (r + s6)Va),

e

where p, g, r, s are rational parameters. Clearly these two equations define
x, y as rational numbers and

yP—ax® =[] ((p + ¢8%* — a(r + s6)?).
6
Hence equation (4) is satisfied if
z—t=(p+qt?h? - a(r + st)?,
for ¢t = 0y, 0,, 65, since

Z2+bz+c=]](-0.
i=9

Multiply out, put #* = —bt® — ct and equate coefficients of ¢°, t, 12 on both
sides. Then

z = p? — ar? —1 = —cq? — 2ars, 0 = 2pg — bg? — as?.
These give
_ bg® + as? _ 1 —cq?
P 2g T 2as

1.e. a two bafameter solution.
Another application? is to the

Theorem 2
The equation

=ax®+by*+c . 5)
has an infinity of integer solutions if a, b, c are odd integers, (@, b) =1, and if

whena = 0 (mod 7), ¢ # b3 (mod 7), or when b = 0 (mod 7), ¢ # a° (mod 7)
and so if ab = 0 (mod 7), it suffices if ¢ # +1 (mod 7).
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Denote the three roots of 1> = ¢ by 6 = 0y, 6,, 65. Then, say,
ax? + by? = (z — 0.)(z — 0)(z — b5) = f(2),
Put
z—0=a(l+ mb+nt»*+bp+4qf+ re?? = aX? + bY?, ()

say, where I, m, n, p, q, r are rational integers. Then f(z) can be expressed in
the form

f(2) = (aX% + bY?)(aX3 + bY%)(aX3 + bY3),
and so we can take
J—— T 3 ——
xVa+yV-b=1] (X,Va + Y,V —b).
r=1

Then X = aX1X2X3 - bX1Y2Y3 — bX2Y3Y1 - bX3Y1Y2,
y = —bY]_YzYs + aX1X2Y3 + aX2X3Y1 + aX3X1Y2,
and so x, y are rational integers. ‘
Expanding equation (6) and equating coefficients of 6, 62 on both sides, we
have the two equations,
2mal + 2gbp = —1 — an®c — br’c, )
2nal + 2rbp = —am® — bg*.

These are linear in /, p and we have four variables in m, n, g, r at our disposal

to ensure that / and p are integers. The right-hand sides of equations (7) will
be even numbers if
m=q = 1(mod 2), n + r =1 (mod 2).
We impose the condition mr — gqn = + 1. Then /, p will be integers if

bg® — r — ber® = 0 (mod a), —am® + n + acn® = 0 (mod b).

Solutions are shown to exist for these congruences from the result in Chapter 6

on the solvability of
y? = x° + k (mod a).

. No difficulties arise in the proof which now is straightforward.
When a = b = 1, a solution is given in terms of an integer parameter f, by

x+iy=]10+10—3*+ )62 + i(t + 0)),
2]
z = 1'— ct(t? + 1)+211(1 +2t+§(t2+ 1)2)',

where i2 = —1, 6 = c.
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A particular case® of the equation
z22=ax3+ by’ + ¢
1s given by

Theorem 3
The equation

22 — (27abd)? = ab?x® + y°, ab # 0, ®)

where a, b, d are integers, has an infinity of integer solutions.
Consider the equation

z2 — k% = ab(x® + ¢y®), abc # 0, )]
Denote by 0 = 6,, 8,, 05 the roots of 3 = c. Take
z+k=al](+qb+ r6?), (10)
6
z—k=b]](ps + g0 + 6%, €9
]

where the p, p,, etc. are integers.
Then

22 - k? = abI:[ (P + Q0 + R6*) = ab(P® + cQ® + ¢2R® — 3cPQR),
and we take
P =pp, + c(qry + qir) = x,
Q =pq + g + crry =y, (12)
R = pri + p;r + qq, = 0.
From equations (10) and (11),
2k _ a(p3 + ¢q® + c2r® — 3cpgr) — b(p3 + cq} + i — 3cpyqury). (13)

The six varlables D=4, T, P1, 41, 1 satisfy the two equations (12) and (13) and
particular solutions may be found without difficulty. :
Take p; = ¢, 9, = —r, r; = 0. Then equation (13) is satisfied.

Also  x=pg—c? y=-pr+q’, z-k=05b¢g-0c, (14
'A 2k = a(p® + cq® + c*r® — 3cpgr) — b(g® — crd). (15)

. Take now ¢ = b/a. Then equation (15) becomes

2k = ap® + 2b%r®|a — 3bpqr, (16)
and equation (9) becomes
— k% = abx® + b%5. (17
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