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4 Theorem 5.1. Let n > 0 be an integer satisfying the following c@

e

.,

(5.2) n squarefree, n % 3 mod 4.

Then there is a monic irreducible polynomial f,(x) € Z[x] of degree h(—4n) >

such that if an odd prime p divides neither n nor the discriminant of fu(x),
then

. (—n/p)=1and fu(x)=0mod p
= X D= ‘ S
p=xn has an integer solution.
inimal polynomial of a real alge-.
Furthermore, fu(x) may be taken to !Je the nymma p ol i dlse-
braic integer o for which L = K(«) is the Hilbert class ﬁelc{ of”K = Q(J\ ’/ _@/

I

Whilrér'(S.Z) does ot glve all integers 1> 0, it gives infin@tely mainy, SO
that Theorem 5.1 represents some real progress. In §9 we’wﬂl use the full
power of class field theory to prove a version of Theorem 5.1 that holds for
all positive integers 7.

A. Number Fields

We will review some basic facts from algebraic numb@r Fheory, including
Dedekind domains, factorization of ideals, and rgmlflcatlon. Most .of the
proofs will be omitted, though references will be given. Readers look.mg for
a more complete treatment should conS}Jlt /Borewch and Shafarev1c}f1 [SJ,
Lang [72] or Marcus [77]. For an especially gompact presentafion of this
material. see Ireland and Rosen [59, Chapter 12]. .

To begin, we define a number field K to be a subfield of the comple.x
numbersUC which has finite degree over Q. The degree of K over Q is
denoted [K :Q]. Given such a field K, we let Ok denote the ‘alg‘ebralc
integers of K, i.e., the set of all a € K which are roots of a monic 1nF§ger.
polvunomial. The basic structure of Ok is given in the following proposition:

Proposition 5.3. Let K be a number field.
(i) Ok is a subring of C whose field of fractions is K.
(i) Ok is a free I-module of rank [K: Q.

Proof. See Borevich and Shafarevich (8, §2.2] or Marcus [77, CorollarieEsItjo
Theorems 2 and 9]. Q.E.D.

We will often call Ok the number ring of K. To begin our study of Ok,
we note that part (i) of Proposition 5.3 has the following useful conse-
quence concerning the ideals of Ok:
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Corollary 5.4. If K is a number field and a is a nonzero ideal of O, then
the quotient ring Ok /a is finite.

Proof. See Exercise 5.1. Q.ED.

Given a nonzero ideal a of the number ring Ok, its norm is defined to
be N(a) = |Og/a|. Corollary 5.4 guarantees that N (a) is finite.

When we studied the rings Z[w] and Z[i] in §4, we used the fact that they
were unique factorization domains. In general, the rings Og are not UFDs,

but they have another property which is almost as good: they are Dedekind
domains. This means the following:

Theorem 5.5. Let Ok be the ring of integers in a number field K. Then Ok
is a Dedekind domain, which means that
(i) Ok is integrally closed in K, i.e, if a € K satisfies a monic polynomial
with coefficients in Ok, then a € Ok.
(if) Ok is Noetherian, i.e, given any chain of ideals ay C ay C ---, there is
an integer n such that a, = d,4q = ---.

(iii) Every nonzero prime ideal of Ok is maximal.

Proof. The proof of (i) follows easily from the properties of algebraic inte-
gers (see Lang [72, §1.2] or Marcus [77, Exercise 4 to Chapter 2]), while (ii)
and (iif) are straightforward consequences of Corollary 5.4 (see Exercise

5.1). QED.

The most important property of a Dedekind domain is that it has unique
factorization at the level of ideals. More precisely:

Corollary 5.6. If K is a number field, then any nonzero ideal a in Ok can
be written as a product

a = pl e pr
»
of prime ideals, and the decomposition is unique up to order. Furthermore,

the p;’s are exactly the prime ideals of Og containing a.

Proof. This corollary holds for any Dedekind domain. For a proof, see Lang
{72, §1.6] or Marcus [77, Chapter 3, Theorem 16]. In Ireland and Rosen [59,
§12.2] there is a nice proof (due to Hurwitz) that is special to the number

field case. Q.E.D.
:\/‘A

Prime ideals play an especially important role in algebraic number the-
ory. We will often say “prime” rather than “nonzero prime ideal”, and the
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(recall that Pk z(f) is generated by the principal ideals aOk, where a =
a mod fOx for some integer a with ged(a, f) = 1). Furthermore, in §8 we

saw that
Pxa(f) C Pxa(f) C Ik (f),

so that C(O) is a generalized ideal class group of K for the modulus Ok
(see (8.1)). By the Existence Theorem (Theorem 8.6), this data determines
a unique Abelian extension L of K, which is called the ring class field of
the order . The basic properties of the ring class field L are, first, all
primes of K ramified in L must divide fOk, and second, the Artin map
and (9.1) give us isomorphisms

C(0) ~ Ix(f)/ Px,z(f) = Gal(L/K).

In particular the degree of L over K is the class number, ie., [L:K]}=
h(©). For an example of a ring class field, note that the ring class field
of the maximal order Ok is the Hilbert class field of K (see Exercise 9.1).
Later in this section we will give other examples of ring class fields.

We can now state the main theorem of the book:

S—

Theorem 9.2. Let n> 0 be an integer. Then there is a monic irreducible poly-
nomial fy(x) € Z[x] of degree h(—4n) such that if an odd prime p divides
neither n nor the discriminant of fu(x), then
5 ) (—n/p)=1and fy(x)=0mod p
p=x“+ny" <
has an integer solution.

Furthermore, fu(x) may be taken to be the minimal polynomial of a real
algebraic integer o for which L = K(a) is the ring class field of the order

Z[/=n] in the imaginary quadratic field K = Q(v/—n).

Finally, if fa(x) is any monic integer polynomial of degree h(—4n) for

which the above equivalence holds, then f,(x) is irreducible over Z and is the
minimal polynomial of a primitive element of the ring class field L described
above.

Remark. This theorem generalizes Theorem 5.1, and the last part of the
theorem shows that knowing f,(x) is equivalent to knowing the ring class

field of Z[v=n].

Proof. Before proceeding with the proof, we will first prove the following
general fact about ring class fields:

Lemma 9.3. Let L be the ring class field of an order O in an imaginary
quadratic field K. Then L is a Galois extension of Q, and its Galois group
can be written as a semidirect product

Gal(L/Q) ~ Gal(L/K)x (Z/2)
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where the nontrivial element of 1/21 acts on Gal(L/K) by sending o to its
inverse o~ 1.

Proof. In the case of the Hilbert class field, this lemma was proved in §6
(see the discussion following (6.3)). To do the general case, we first need to
show that 7(L) = L, where 7 denotes complex conjugation. Let m denote’
the modulus fOg, and note that 7(m) = m. Since ker(®r,x,m) = Px2(f),
an easy computation shows that ’ '

ker(®ry/x,m) = T(ker(®1/k,m)) = T(Pk,2(f)) = Px 2(f)

(see Exercise 9.2), and thus ker(®,y/x m) = ker(® . Then 7(L)=L
follows from Corollary 8.7. L)/ Km (BL/k,m) (L)

As we noticed in the proof of Lemma 5.28, this implies that L is Galois
over Q, so that we have an exact sequence

1— Gal(L/K) — Gal(L/Q) — Gal(K /Q)(~1/2Z) — 1.
Since 7 € Gal(L/Q), Gal(L/Q) is the semidirect product Gal(L/K)x (Z/

27), where the nontrivial element of Z/2Z acts by conjugation by 7. How-
ever, for a prime p of K, Lemma 5.19 implies that

(5 )= () - (5)

(see Exercise 6.3). Thus, under the isomorphism Ix(f)/Px z(f) ~ Gal(L/

K), conjugation by 7 in Gal(L/K) corresponds to the usual action of 7 on
Ifg(f). But if a is any ideal in Ix(f), then a@ = N(a)Ox lies in Pk z(f)
since N(a) is prime to f. Thus @ gives the inverse of a in the qudtient
Ix(f)/Px2(f), and the lemma is proved. Q.E.D.

We can now proceed with the proof of Theorem 9.2. Let L be the ring

- class field of Z[\/—n]. We start by relating p = x* + ny? to the behavior of
p.in L:

- Theorem 9.4. Let n> 0 be an integer, and L be the ring class field of the

: orc‘ier Z[\/—n] in the imaginary quadratic field K = Q(/—n). If p is an odd
. prime not dividing n, then

p = x*+ny? < p splits completely in L.

Pgoof. Let O = Z[\/—n]. The discriminant of O is —4#n, and then —4n =
‘ f. t?K. by (7.3), where f is the conductor of O. Let p be an odd prime not
dividing n. Then pf f?dk, which implies that p is unramified in XK. We will
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