Chapter 8

Miscellaneous Facts 11

We shall consider in this chapter some basic topics, some of which are
clearly interrelated.

First, there are heuristic conjectures by Cohen and Lenstra [COHE84]
that, if true, would explain why class numbers and class groups do not
appear to bg “random” numbers and groups, but have decidedly special

properties, among them the strong tendency of the groups to be cyclic.

We shall also present a computational technique for decomposing
the finite abelian class groups into their cyclic factors. This technique
is successful, in part, because of the observed special nature of class
groups.

Also presented will be some results giving conditions uhd_er which
class numbers possess certain congruence conditions for odd prime mod-
uli, for example, conditions under which there exist elements of order
3 in the group.

In contrast with producing elements of order 2 in class groups, which
can be done by choosing highly composite fundamental discriminants,
for example, there is no effective way to generate class groups with a

large number of elements of a fixed odd order. There has been substan-
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tial effort and computation, however, to search for class groups with
a large rank in the p-Sylow subgroup for odd primes p. As is evident
from the conjectures of the Cohen-Lenstra heuristics, such a search is

less likely to succeed the larger the prime p, and most of the effort has

4

gone toward finding class groups of large rank in the 3-Sylow and the

5-Sylow subgroup.

Finally, there is the obvious tantalizing question as to whether there
is or should be any connection between the class groups of positive and
negative discriminant with similar discriminants. A partial answer has
been given by Scholz.

As in the earlier chapter on miscellaneous facts, some of the com-
mentary may involve mathematics which is deeper than the rest of
this work. We trust the astute reader can skim the commentary; the

statements of the results should be readily comprehensible.
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8.2 Decomposing Class Groups

Class groups of forms are finite abelian groups, and we can apply the

decomposition theorem for such groups, which we stated in one form ‘

in Chapter 4 and which we'restate here in a different form.

Theorem. Let G be a finite abelian group, written multiplicatively, and
let C(r) denote a cyclic group of order r. G can be written as a direct

product of groups of prime power order,
G=38p XSy, X-+-%XS8,,,

in which each group S, is of order some power of p; and is a direct

product of cyclic groups each of order some power of p;:
Spe = C(pi") X C(p?) x -+ x C(p{"),

where we may choose a1 < oy < ... < q.

In any group G of order A = p*h’ with p prime and not dividing A/,
theset S = {f¥: fe€G}isa subgroup of order p* called the p-Sylow
subgroup. Our decomposition technique for class groups will actually
work for any finite abelian group, but is more effective for class groups
than for groups in general because of certain specific characteristics
of class groups. The approach outlined here is the one used in both
computations by Buell [BUEL76] and [BUEL87a)], and is derived from
the suggestions about computations in class groups made by Shanks
[SHANG69] and conveyed to Buell by A. O. L. Atkin.

We decompose the group one p-Sylow subgroup at a time. An initial

step is to determine whether it is possible for the p-Sylow subgroup to

be noncyclic. For odd primes p, we must have at least p? dividing h.
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For the prime 2, we must have at least 4 genera and at least a factor of

16 in the class number (at least a factor of 4 in the number of forms per
genus). This is because some basic group structure is inherited from

the structure of the genera—a discriminant with k generic characters

has exactly k& — 1 cyclic factors of order some power of 2. It is thus
customary, in describing “noncyclic” groups, to consider the 2-Sylow
subgroup to be noncyclic if and only if the subgroup of squares (that

is, the principal genus) is noncyclic. By squaring, any cyclic factors of

order 2 disappear. A “minimally noncyclic” 2-Sylow subgroup is thus

a subgroup of the form C(4) x C(4). |
Having determined that the class number # is sufficiently composite

that some p-Sylow subgroup Iﬁight be noncyclic, we then, for each

such prime p, choose a few (perhaps a dozen) forms f at random and

‘* compute fMP. If any of these is not the identity, the p-Sylow subgrouf)
A‘ is cyclic. If all a,rem the identity, there is reason to suspect that the’

p-Sylow subgroup is noncyclic. For the 2-Sylow subgroup, we consider

the fpg-th power of random forms, where fpg is the number of forms
per genus.

Given a class group of order h = p*h/, whose p-Sylow subgroup is
thought to be noncyclic, we break down the subgroup into its cyclic

factors as follows.

PART I
1. Choose at random a form f; of order some pbwer of p.

2. Compute the order p°™® of f;. Save, in a list, the penultimate

p-power-cycle fli(pordl—l), fori=1,...,p—1, of fi.

3. Choose at random a form f; of order some power of p.
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4. Compute the order p>™# of f,. Exchange f, and f;, if neces-
sary, so that ord, < ord,. If exchange is necessary, compute the

penultimate p-power cycle of the new f;.

(We now have f; of order ord; and f, of order ord,, with ord; <
Ordl.)

_i(po'”dl -1 )

5. If fé’ord?_l is equal to fli(pordl_l) for any ¢, replace f; by f2 f;
and go to Step 4.

At the end of Part I we have two forms which generate independent
cycles. If the sum of ord; and ord, is equal to k, then we have genelzated
the p-Sylow subgroup, and its structure is C(p°"%2) x C(p°™¥). If not,
we must compute further.

PART IT

(nordy —
6. Save, in a list, the penultimate p-power-cycle fg(” ’ 1), for 7 =

1,...,p—1, of f5, and all cross products f{'(pordl_l)fzf'(P"'d?“l)-

7. Choose at random a form f3 of order some power of p.

8. Compute the order p™® of f3. If ords > ord;, we replace f; with
f3 and return to Step 3. If ords > ord;, we replace f, with f3
and return to Step 5.

(We now have forms f; of order ordy, f; of order ord,, and f3 of
order ords, with ords < ord, < ord; and with f; and f; generat-

ing independent cycles.)

ordq —1 ordy

9. If f£7° is equal to fli(pordl_l)fg(p ™) for any ¢,7, 0 < 2,7 <

—i(p""dl -1 ) fz__j(pordz -1 )

p — 1, replace f3 by f3f; and go to Step 8.
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Some comments are appropriate. In Steps 1, 3, and 7, we choose a
form of order some power of p by choosing a form f and eomputing f*'.
In theory, we have no guarantee that any given “random” technique for
generating forms will not produce elements for which f*" is not always
the identity. In practice, we have found that choosing forms whose
first coeflicients are simply the primes ¢, in order, such that 4 = A
(mod 4q) is solvable, provides a perfectly adequate list of “random”
forms for the purposes of this algorithm.

We also have ignored the obvious exit conditions if we find, in fact,

that the group is cyclic. Since the class groups tend to be cyclic about

36% of the time, it is certainly worthwhile to do the test above to

determine if a given group is probably noncyclic before beginning the
more elaborate decomposition computation. If we ever discover a form
f such that f*/? is not the identity, however, then we know that the

p-Sylow subgroup is cyclic, and we stop.

The heart of this technique is the observation that underlies Steps

5 and 9: If f; is of order p>® and f, is of order p°"® with ord; < ord,,
. po"d2'"] . ,l'(pordl—l) . _,i(pordl——l) .

and if f is equal to f; for some %, then f,fy is of

strictly smaller order and is less “dependent” on f,. For example, if we

have a group of order 81,
{1,a,a*} x {1,b,8%,...,5%)}

and we choose elements b and ab®, both of order 27, these two elements

generate the full group, but not in a way which can be recognized
without generating nearly the entire group, a process wasteful both in
time and space. By saving the penultimate cycle of b, that is, 5° and

b'®, we can determine that the penultimate p-power of ab®, which is

(ab®)® = b'®, matches one of our saved elements, and (ab®)b~? = ab®
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or properties. Weinberger has done this in an alternate proof of the ex-
istence of infinitely many positive fundamental discriminants with class
number divisible by a given integer n [WEINT73]. Weinberger shows that
if we let the discriminant A be the fundamental part of A(z) = " +4,
then the class number of A is infinitely often divisible by n. Honda
earlier showed [HONDG8] that if we let A be the fundamental part of
discriminants 423 — 27y? for an appropriate choice of z and y, then for
infinitely many positive A we have class numbers divisible by 3. Sim-
ilarly, Chowla and Hartung [CHOWT74] showed that for discriminants
of the form A = —(27n? 4+ 4) for which —A is prime, the class number
is divisible by 3. The opposite question has also been studied by Har-
tung, who showed [HART74] that there exist infinitely many negative
fundamental discriminants whose class numbers are not divisible by 3.

Unfortunately, as a moment’s thought will show, (8.2) is not entirely
practical as a means of generating classes of order n in class groups. The
problem is twofold. First, the equation itself is open-ended, as there
are no conditions of magnitude on any of the variables. Second, the
equation is of degree n, so that the computational question of handling
the arithmetic in searching for solutions is significant. For these reasons,
solving (8.2) has usually been used as a heuristic in finding forms of

some order n rather than a method for exhaustively enumerating them.

8.3.2 Exact and Exotic Groups

Having guaranteed by various means that noncyclic p-Sylow subgroups
exist for all p, at least for negative discriminants, it is not necessarily
trivial to find examples even for all small primes p. In the following
table we list for the small primes p the first occurrence, for even and odd

negative discriminants, of a noncyclic p-Sylow subgroup (the notation
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in the third column 3 x 9, for example, indicates a group C(3) x C(9))
[BUEL76, BUELS87a).

Prime Discriminant Complete Class Group

3 —3299 3x9
—3896 3 x 12

3 —11199 3 x 20
—17944 5 x 10

7 —63499 7% 7
—159392 7x 14

11 —65591 11 x 22
—580424 22 x 22

13 —228679 13 x 26
—703636 13 x 26

17 —-1997799 . 34 x 34
—4034356 17 x 34

19 -373391 19 x 38
~-3419828 : 19 x 38

23 —7472983 23 x 46
—11137012 23 x 46

29  —20113607 29 x 116
—16706324 58 x 58

31  —113597903 31 x 62
41 —6112511 41 x 82

The discussion of this section has centered on subgroups of the
class group; there is also some small interest in knowing which fi-
nite abelian groups actually occur as the exact class group, not just
a subgroup. Chowla proved.that not all elementary 2-groups can oc-
cur as class groups of quadratic fields [CHOW34]. In our computa-
tion of class groups of negative discriminant, we found that all abelian
groups of rank two and order less than 1000 occurred as class groups
except C(11) x C(11), C(19) x C(19), C(29) x C(29), and C(31) x C(31)
[BUEL87a). It is therefore almost certain that C(11) x C(11) occurs as
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b?* — 4a® in a number of different ways, usually by finding polynomials
bi(z), ba(z), a1(z), az(z), such that

A((I)) = bl(fb)z - 4&1(:17)3 = b2($)2 - 4(1,2(37)3
With appropriate conditions on the sizes of terms, one can guarantee in

this way that for negative discriminants we have at least rank two in the
3-Sylow subgroup. Shanks generally took the approach of ﬁnding a few
very select polynomials, often choosing them so as to be able to apply
Scholz’s theorem, mentioned at the end of this section. Buell and Diaz y
Diaz by contrast used a large number of polynomials. Diaz y Diaz, who
was most successful, generated at one point hundreds of discriminants
of 3-rank at least two from a large number of polynomials, and then
sorted the discriminants in order to find matches. If a discriminant
had been generated by different polynomials, with different 3-cycles,
it would have rank three or four. More recently Schoof [SCHO83] has
found groups with large 3-rank and 5-rank by using the theory of elliptic
curves.

We summarize the first occurrences of large rank. The first four

lines represent discriminants known to be the first occurrence of 3-rank

or of 5-rank three, as all previous class groups have been computed.

The remaining examples are merely the first known occurrences.

Discriminant Complete Class Group

—3321607 3 x 3 x63
—4447704 6 x 6 x 24
—18397407 5 x 10 x 40
—11203620 10 x 10 x 10
—653329427 3 x 3 x3Ix210
—2520963512 3x3x6x276

—258559351511807 5 x 5 % 10 x 59140
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In computing 3-Sylow subgroups, a significant theorem of Arnold
Scholz has been extensively used, especially by Shanks. The theorem
relates the class groups of the quadratic fields of radicands +A and
—3A [SCHO32].

Theorem 8.6. Let +A and —3A be the radicands of the quadratic
fields QVA and QvV=3A, where A may or may not be divisible by
3. If r is the rank of the 3-Sylow subgroup of the field with negative
discriminant, and s is the rank of the 3-Sylow subgroup of the field with

positive discriminant, then

s<r<s+1.



Duncan A. Buell

Binary Quadratic Forms

Classical Theory and
Modern Computations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo Hong Kong




Duncan A. Buell
Supercomputing Research Center
Bowie, MD 20715-4300, USA

Mathematical Subject Classification Codes: 11-02, 11R11, 11R29

Library of Congress Cataloging-in-Publication Data

Buell, Duncan A.

Binary quadratic forms : classical theory and modern computations

/ Duncan A. Buell.
p. cm.

Bibliography: p.
| l. Forms, Binary. 2. Forms, Quadratic. 1. Title.
f QA201.B84 1989
; 512'.5—dc20 89-11314

Printed on acid-free paper.

© 1989 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form
of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy prepared by the author using TgX.
Printed and bound by Edwards Brothers, Incorporated, Ann Arbor, Michigan.
Printed in the United States of America.

987654321

ISBN 0-387-97037-1 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97037-1 Springer-Verlag Berlin Heidelberg New York




