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1. Introduction 
An analytic funct ionf(z)  is said to have a fixpoint ~ 4= o~ of multiplier 1 if 

f(~)  = ~ , f '  (4) = 1. Without loss of generality we may put ~ = 0, so that the func- 
tion has an expansion 

(1) f (z)  = z + ~ a k z k 
k = 2  

convergent in some neighbourhood of 0. We shall assume a2 4:0. Now it has 
been shown (e.g. in [1]) that there is for every complex s a unique formal iterate 

oo 

(2) f s ( z ) = z + ~  a~(s) z k, a2(s)=s a2, 
2 

where the ak(s) are well-defined polynomials in s determined by comparing 
coefficients in the formal identity 

(3) f o fs(z)= fs of(z) .  

For  positive integral values of s=n (say), the series (2) is the same as that of 
the n-th iterate o f f ( z ) - f l ( z  ). By analogy thefs(z) are in general called frac- 
tional iterates. 

The series (2) does not necessarily have a positive radius of convergence 
for each s; in fact, as was shown in [i] the values s corresponding to a positive 
radius of convergence either fill out the whole complex plane or form a discrete 
one or two dimensional lattice. In the former case one may callf(z) embeddable 
(in a continuous group of analytic iterates (2)). SzE~:~R~S [6] and BA~:ER [2] 
showed that if (1) is the expansion of a function entire or even meromorphic 
in the plane, thenf(z)  is not embeddable in this sense except in the single case 

Z 

f = l+a-----~' 

a constant. 

Recently RAN 
shown that 

[5], using a method based on work of LEWIN ([3, 4]) has 

Z 
f ( z )  = 

V l + z  

1 2 3 3 = z - ~ - z  +~-z  +... 



378 L N. BAKER: 

is not embeddable. This is the first example of a non-embeddable algebraic 
function other than those obtained as the inverses of polynomials and rational 
functions. 

In this note we use a simpler version of the method of [2] to prove that a 
large class of functions is non-embeddable: 

Theorem. I f  the expansion 

(1) f ( z ) = z +  ~ akz k 
k=2 

is convergent in some neighbourhood of the origin, if 

(a) the analytic continuation o f f ( z )  is possible without restriction in the 
Riemann sphere punctured in a countable set of points and gives rise to a.finitely 
many valued function there, and if 

(b) a2+0,  a~-aa4:O, 
then the series (1) is not embeddable in the sense defined above. 

In particular, if (1) is the expansion of an algebraic function and (b) is 
satisfied, then it is not embeddable. This case includes RAN'S example, for 
which a 2 = - �89 a 3 = 3. 

The theorem also includes most of the meromorphic functions proved non- 
embeddable in [2], and achieves this result in a simpler way at the expense of 
omitting those non-bilinear meromorphic functions which fail to satisfy (b). 

The theorem also treats many functions (e. g. meromorphic functions of 
algebraic functions) not previously considered in connexion with this problem. 

In [1] it was pointed out that one can construct embeddable functions and 
the corresponding one parameter groups with expansion (2) corresponding to 
an arbitrary infinitesimal transformation. Using this we show in section 3 that 
one can find embeddable series (1) which satisfy (b) of our theorem and thus 
cannot have the property (a). We also show that if (b) is dropped one can find 
embeddable functions having the property (a); indeed one can find embeddable 
algebraic functions. 

2. Proof of the Theorem 

It is convenient to transfer the fixpoint to oe. If we change variables in the 
transformation z l = f ( z )  by putting z=k/ t ,  zl---k/t 1 and choose k so that 
- k a z =  1 we obtain instead of (1) the transformation 

co 

(4) t t = t-P 1 - b ~  b k t - g =  g(t)  
1 

which has a fixpoint at ~ .  We note that 

(5) bt =(aZz-aa)/a] . 

The same change of variables applied to (2) turnsfs(z) into 
oo 

(6) t~ = t + s + ~ bk (s) t -k = g~ (t), 
1 
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where gs(t) form the unique family of formal series commuting with (4). The 
series (1) is embeddable precisely when the series (6) converges for some t + oo 
for every s. 

From now on gs(t) will denote the series (6) and g=gl  will be assumed con- 
vergent for [ t J > R. 

We quote the following results from [1, 6]: 

Lemma 1 [1, p. 272]. I f  the region 

(K) = U r K ) ,  
- (~/4)_-< e .~ (z~/4) 

where r (G K) is the half-plane {z [ Re (z e- i~) > K}. then.for all sufficiently large 
K( > R), g, (z) is regular, 

(7) g, (z) ~ ~ ( t ; ) ,  n = 1, 2 , . . .  

and 

(8) Re g,(z) --+ co as n --+ oo 

for all z in the closure ~ (K) of ~)(K). 

By [1, 273 (21)] (8) holds uniformly on any compact subset of ~)(K). 

Lemma 2 [1, p. 273]. For all sufficiently large K the domain ~ (K) of Lemma 1 
has the properties: 

(9) A(t) = lira {g, (t) - n - bl log n}, 

(where b 1 is as in (4)) exists uniformly for te~)(K); moreover A( t )  is regular 
and schlicht in ~ (K) and A' (t) ~ 1 uniformly as t ~ oo in ~ (K). One has 

(10) A ( g , ( t ) ) = A ( t ) + n  for t e ~ ( K ) .  

Lemma 3 [6, w 2]. I f  the series (6) have a positive radius of convergence for 
every s, then b ( t )=A '  (t) is regular in a full  neighbourhood of t= oo and has an 
expansion 

oo 

(11) b(t) = 1 - bl t -  1 + ~ flk t-k 
2 

which may be calculated from 

b o g(t)= b(t)/g'(t). 

We next prove 

Lenlma 4. I f  the series (6) have a positive radius of convergence for each s, 
and if there exist a f ixed  R 1 > R > 0  and arbitrarily large integers n such that 
the total number of branches obtained by analytic continuation of gn(t)= t +n + 

bk(n ) t -k within l tl > R1 is finite, then the coefficient b 1 in (4) and (5) is zero. 

Proof. Choose K > R~ and so large that Lemma 2 holds and that (Lemma 3) 
A'(t) is regular in [t[>K. We may suppose A'(t) as close to 1 as we wish in 

(K) by choosing K large enough. Now t ~ w=A (t) maps X)(K) univalently 
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and conformally onto a region ~ of the w-plane lying to the right of a curve 
(of the same general appearance as the boundary of ~ (K)) which approaches 
co in the directions arg w = ___ 3 re/4. ~ contains a half-plane H: Rew >  K'. 

We now assume b~ +0. Choose a fixed R'>K. Let y be the segment [R', co) 
of the real axis, described from co to R', and let fl be the circle I t l = R' described 
in the positive sense, starting and finishing at R'. Now A' (t) is regular on p and 
y and so A (t) may be continued analytically from oo along 7/3 or indeed along 
y fik for any positive or negative integer k. If b I @0 the function A (t), although 
continuable without restriction on y ilk, will have an infinity of values and its 
value will increase by -2r~ ib~ for each circuit of ft. 

Now for any integer n we have g , ( t )=A_l (A( t )+n  ) on 7 near c~, by 
Lemma 2. If we choose n sufficiently large, then as t describes ;~ fl the values of 
w=A(t )+n form a set S which lies in the right half-plane H defined above. 

Consider the sets S+2zciblk and S - 2 ~ i b l k ,  where S is as above and k 
is a positive integer. Then since S lies in the half-plane H we must either have 
S + 2 z ~ i b l k c H f o r  all k or S - 2 r c i b l k c H .  Suppose, say, that S - 2 u i b t k c H  
for all positive k. As t describes fi yet again, starting from R' at the end of 7fl 
and proceeding in the positive direction, then the values of A(t)+n differ by 
-2rcibt from the values taken during the previous circuit. But these values 
lie in S-2zc ib  I and so in H. Similarly as we describe 7fi k, for any integer k > 0 ,  
the values of A(t)+n lie in 

k 

0 (S-2~z i b t j )  
j=0 

and so in H. 

We note that the values of A(R')+n corresponding to the different con- 
tinuations along ~/~k, k = 0 ,  1, 2, ... form an infinite set wo-2rcib~k, k-~O, 1, 
2 . . . .  in H. We now consider the continuation of g ,=A_l (A( t )+n)  along 
yflk, k > 0 ,  and note that during this continuation A(t)+n remains in H, 
where A_ l(W) is univalent and regular. Thus for each k > 0  we obtain a dif- 
ferent continuation of g,(t) to R' along yflk in [tl>R', with value g , (R ' )=  
A_l (wo-2zciblk). 

But we may assume n is one of the integers, whose existence is assumed in 
the statement of the Lemma, such that only a finite number of branches may 
be obtained by continuation within [ t ]>R1 and a fo r t io r i  by continuation 
within a part of It] > R ' ( > K > R O .  Thus we have a contradiction unless b~ =0,  

We may remark that if in the above it had been the sets S+2~ib~k,  k= 
0, 1, 2 . . . .  which had been contained in H, we should simply have considered 
continuations around the paths 7fi -k and the proof would have been otherwise 
unaltered. 

This concludes the proof of Lemma 4. 

Lemma 5. Let F be the class of analytie funetions f(z) with the property: if 
the Riemann sphere S is punctured in a suitably chosen and at most countably 
infinite set of points E = E ( f )  then some branch of f (z)  meromorphie at a point 
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of S - E  can be continued unrestrictedly in S - E  with meromorphic character and 
gives rise to a finitely many valued function f~(z). 

I f  f(z) and g(z) belong to F then so does f(g(z)), and hence so also does the 
iterate f ,  (z) for any integer n > I. This statement is true for any choice of the 
initial branches o f f  and g so long as w=g(z) is analytic at the base point z o 
and f(w) is analytic at w=g(zo). 

Proof. We show first that fE(z) contains all dements of the analytic con- 
figuration A o f f ( z )  lying over points of S - E .  Let q ~ S - E  and P(z, q) be an 
arbitrary element of A over q. Then if P(z, p) was the initial branch o f f ( z )  
used to generate fE (z) by continuation, we know, since P(z, p)~A that there is 
a curve C running from p to q on which P(z, p) may be continued meromor-  
phically to P(z, q). Now the continuation of P(z, p) is meromorphic on the 
compact set C and hence also on the set D of those points whose spherical 
distance f rom C is less than ~, for some e > 0. We can find a curve C '  running 
f rom p to q in D - E .  I t  suffices to show this in the ease when neither p nor q 
is ~ .  We note that, since D is connected, p can be joined to q by a polygon P 
whose sides are paraIM to the x or y axis. Now only a countable number  of the 
lines x = const or y = const can meet E, so by small displacements of the sides 
of P we may assume that no sides of P (except perhaps the first and last) meet E. 
To deal with the terminal sides we may have to rotate them by an arbitrarily 
small amount  to remove points of E. In this way C'  may be constructed as the 
modification of P. The continuation of P(z,p) along C'  in S - E  to q results 
in the same element P(z, q) as does continuation along C. This establishes the 
statement made at the beginning of the paragraph. 

We may easily deduce that the number of branches off (z)  (and hencefE(z)) 
over any point p e S - E  is the same number, m say, independent of the choice 
of p. Suppose the corresponding number of branches of g(z) in S - G ,  where 
G=E(g), is n. 

We next observe that for any fixed p the set of z such that for some branch 
of g(z) we have g(z)=p contains only isolated points and is therefore count- 
able. Thus the set H of z for which some branch of g(z) is meromorphic and 
g(z) lies in E = E ( f )  is a union of countable sets and thus countable. Thus 
K =  H u  G is countable. 

Next take an arbitrary point p in S - K  and take any branch of g(z) there, 
given say by the function element w = g  = q~ (z) meromorphic at p. Then ~o (p) = 
q ~ S - E ( f ) .  Thus we may take any branch o f f ( z )  given, say, by a function 
element f =  ~ (z) meromorphic  at q. Thus one may substitute ~p in ~ and obtain 
a branch o f f ( g )  given near z=p by the meromorphic  element ~(q~(z)). We 
show that this element may be continued unrestrictedly in S--K and gives 
rise to at most  mn branches over any given point. 

Let C be any path in S - K  leading f rom p to some point t. The element 
w=g= q~(z) may be continued meromorphically f rom p to t along C and the 
values w describe a curve ~o (C) in S - E .  The continuation of ~o (z) at t is one 
of the branches of g~(z) and the terminal point of q~(C) is the corresponding 
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value of u =gG(t). The function element ~(w) continues into a branch offE(w ) 
over u as w moves along ~o(C) from q~(p) to u. Thus, as z moves along C from 
p to t, the function ~((p(z)) is meromorphically continued into one of the 
compositesf~(gG(z)) where g~(z) is one of tl~e n elements of the analytic con- 
figuration of g lying over t, and for a given g6(z) such that ga(t)=u, f z  is 
one of the rn elements of the analytic configuration o f f  lying over u. Thus one 
can obtain at most mn different branches o f f ( g )  in this way. This completes 
the proof of the lemma. 

Proof of the Theorem. If we assume that in (1)f(z)  satisfies condition (a) of 
the theorem and is embeddable, so that in (4) g(t) satisfies condition (a) and is 
embeddable, then by Lemma 5 we know that for any fixed integral s = n  the 
g,,(t) of (6) has at most a finite number of branches. To be exact the lemma tells 
us that for some countable set E, (g,)e is finitely many valued, but the opening 
part of the proof of Lemma 5 shows that (g,)E contains all the elements of the 
analytic configuration of g, over points of S - E  So we know that g,(t) has a 
finite number of branches obtainable by any analytic continuation. Thus 
Lemma 4 applies and we conclude that 

bl=(a~-a3)/a~=O, i.e. a ~ - a a = 0 .  

This concludes the proof of the theorem. 

3. Counterexamples 

a) Embeddable Functions Satisfying a2 +0, a z - a 3  +0 

It was pointed out, for example in [1, p. 289], that if 

3 

is regular at z = 0  then the solution of the differential equation 

dw 
ds -t(w) 

with boundary condition w=z at s = 0  is analytic both in s and z in a neigh- 
bourhood of s=0 ,  z = 0  and w(s, z) satisfies w{s, w(t, z)}=w(s+t, z). Thus re- 
garded as a function of z with parameter s the function fs(z)= w(s, z), which 
has an expansion of the form (1), is a one parameter group embedding any 
of its members. 

If we take, for example, 
W 2 

I ( w ) =  l - w  ' 

the integrated form of the equation with the given boundary conditions is 

(t2) w- 1 + log w = z -  1 + log z -  s. 
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Putt ing w = z ( 1  +v)  we obtain 

V 
z =-]-~V- {s + log(1 +v)} -1 

=s-l{v-(s-* + l) vZ +...} 

regular in v at v = 0 and this may  be inverted to give 

I)~- S Z-~(S'-}-S2) Z2"-t-... 

regular in z at z = 0. Thus 

W.~.Z-~S Z 2 -~ (S-3L S z) 2:3+ . , .  

convergent for small enough s and z. Fix some sufficiently small non-zero So 
and take 

w = f ( z )  = z + So z 2 + (So + s 2) z 3 + ' " .  

This is then convergent  in some ne ighbourhood of z = 0  and is embeddable.  
In  the nota t ion of the t h e o r e m f ( z )  is our  series (1) and we have az =So, a3 = 
so +So 2 so that  (b) is certainly fulfilled. It is clear that  condit ion (a) cannot  hold 
and indeed (12) shows t h a t f ( z )  is infinitely many-valued. 

b) Embeddable Algebraic Functions 

Take any algebraic funct ion A (t), for example t + fi t -  1, which has a branch 
regular at oo for  which 

A ( t ) = t  +f i  t -~ + ~ t - g + . . . .  

Then the inverse A_ a (w) of A (t) has an expansion 

A _ I ( W ) = W -  fi w - 1 - ~  w-2  + ... 

and the algebraic function 

g ( t ) = A _ l { A ( t ) +  l } = t +  l +fl  t - 2 +  ... 

is embeddable in the group of iterates 

g s ( t ) = A _ l { A ( t ) + s  } = t + s + s f l  t - z + - . . .  

One may  transfer the fixpoint f rom oo to 0 without  changing the nature of the 
funct ion and obtains an embeddable algebraic 

f ( z )  = {g ( z -  *)} -* = z -- z 2 + z a - (fi + 1) z 4 + " . .  

Thus there are indeed func t ions f (z )  satisfying condit ion (a) of the theorem 
but  embeddable.  Of course they must  then satisfy a 2 - a a  = 0  if a2 4=0. In  our  
example a2 = - 1, aa = + 1. 
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