1. This was meant to be Ex. XI.6.2 on homework set 6 . -
2. (a) (i) $f(1, S)=1 S 1^{-1}=S$ (ii) $f(\sigma, f(\tau, S))=f\left(\sigma, \tau S \tau^{-1}\right)=\sigma \tau S \tau^{-1} \sigma^{-1}=\sigma \tau S(\sigma \tau)^{-1}=f(\sigma \tau, S)$
(b) Since $\left[S_{3}: 1\right]=6=3 \cdot 2$, the 2 -groups of S_{3} are Sylow. They are the subgroups $H, H^{\prime}, H^{\prime \prime}$ generated by the 3 involutions $(1,2),(2,3),(1,3)$ respectively. Any conjugate of H is a 2 -group and conversely by the second Sylow theorem all 2-groups are conjugate, so the orbit of H is $\left\{H, H^{\prime}, H^{\prime \prime}\right\}$.
Since $\left[S_{3}: A_{3}\right]=2, A_{3} \triangleleft S_{3}$, so the orbit of A_{3} is trivial.
(c) By the second Sylow theorem the size of the orbit is the index of the normalizer, so $\left[S_{3}: N_{S_{3}}(H)\right]=3$. By Lagrange's theorem $\left[N_{S_{3}}(H): 1\right]=2$, but $H<N_{S_{3}}(H)$, so $H=N_{S_{3}}(H)$.
Since $A_{3} \triangleleft S_{3}, N_{S_{3}}\left(A_{3}\right)=S_{3}$.
3. (a) Δ_{n}^{\prime} is generated by a^{2} (see Ex. XII.3.4 on homework set 8).
(b) The subgroup (a) has size 5 and index 2 , so is normal (in fact, $(a)=\Delta_{5}^{\prime}$). This gives a composition series $\Delta_{5} \triangleright(a) \triangleright 1$ with corresponding factors \mathbf{Z}_{2} and \mathbf{Z}_{5}.
4. (a) By long division $u^{2}-2 u+3=(u-1)^{2}+2$. Therefore, $s=\frac{1}{2} u-\frac{1}{2}$.
(b) Let $w=u-1$. Then $u=w+1$, so $0=(w+1)^{2}-2(w+1)+3=w^{2}+2$ Dividing by w^{2} we get $0=1+2 w^{-2}=1+2 s^{2}$
