- 1. This was meant to be Ex. XI.6.2 on homework set 6. $\ddot{\smile}$
- 2. (a) (i) $f(1,S) = 1S1^{-1} = S$ (ii) $f(\sigma, f(\tau, S)) = f(\sigma, \tau S \tau^{-1}) = \sigma \tau S \tau^{-1} \sigma^{-1} = \sigma \tau S (\sigma \tau)^{-1} = f(\sigma \tau, S)$
 - (b) Since $[S_3:1] = 6 = 3 \cdot 2$, the 2-groups of S_3 are Sylow. They are the subgroups H, H', H'' generated by the 3 involutions (1, 2), (2, 3), (1, 3) respectively. Any conjugate of H is a 2-group and conversely by the second Sylow theorem all 2-groups are conjugate, so the orbit of H is $\{H, H', H''\}$.

Since $[S_3 : A_3] = 2$, $A_3 \triangleleft S_3$, so the orbit of A_3 is trivial.

(c) By the second Sylow theorem the size of the orbit is the index of the normalizer, so $[S_3: N_{S_3}(H)] = 3$. By Lagrange's theorem $[N_{S_3}(H): 1] = 2$, but $H < N_{S_3}(H)$, so $H = N_{S_3}(H)$.

Since $A_3 \triangleleft S_3$, $N_{S_3}(A_3) = S_3$.

- 3. (a) Δ'_n is generated by a^2 (see Ex. XII.3.4 on homework set 8).
 - (b) The subgroup (a) has size 5 and index 2, so is normal (in fact, $(a) = \Delta'_5$). This gives a composition series $\Delta_5 \triangleright (a) \triangleright 1$ with corresponding factors \mathbb{Z}_2 and \mathbb{Z}_5 .
- 4. (a) By long division $u^2 2u + 3 = (u 1)^2 + 2$. Therefore, $s = \frac{1}{2}u \frac{1}{2}$.
 - (b) Let w = u 1. Then u = w + 1, so $0 = (w + 1)^2 2(w + 1) + 3 = w^2 + 2$ Dividing by w^2 we get $0 = 1 + 2w^{-2} = 1 + 2s^2$