- 1. Let b_1, b_2 be a basis for F and let $f \in Alt_2 F$. Given $x_1, x_2 \in F$, there exist unique $\kappa_{11}, \kappa_{12}, \kappa_{21}, \kappa_{22} \in K$ such that $x_1 = \kappa_{11}b_1 + \kappa_{12}b_2$ and $x_2 = \kappa_{21}b_1 + \kappa_{22}b_2$. Since f is bilinear, $f(x_1, x_2) = f(\kappa_{11}b_1 + \kappa_{12}b_2, \kappa_{21}b_1 + \kappa_{22}b_2) = \kappa_{11}\kappa_{21}f(b_1, b_1) + \kappa_{12}b_2$ $\kappa_{11}\kappa_{22}f(b_1,b_2) + \kappa_{12}\kappa_{21}f(b_2,b_1) + \kappa_{12}\kappa_{22}f(b_2,b_2)$. Since f is alternating, $f(b_1,b_1) =$ $f(b_2, b_2) = 0$ and $f(b_2, b_1) = -f(b_1, b_2)$, so $f(x_1, x_2) = (\kappa_{11}\kappa_{22} - \kappa_{12}\kappa_{21})f(b_1, b_2)$. Thus, any $f \in Alt_2F$ is a scalar multiple of the 2×2 determinant map and the scalar in question is unique. Therefore, the determinant map forms a basis for Alt_2F .
- 2. Choose a basis $(b_i, i = 1..n)$ for F. We may represent L by a matrix $A = (a_{ij})$, whose columns are the coefficients of the images of the basis elements under L expanded in the same basis, i.e. $L(b_i) = \sum_i a_{ij} b_j$. The identity map is represented by the identity matrix, also denoted by I.

The map $\lambda I - L$ fails to be bijective \Leftrightarrow the matrix $\lambda I - A$ is not invertible $\Leftrightarrow \det(\lambda I - A)$ is not a unit in K. Since K is a field, this is equivalent to det $(\lambda I - A) = 0$, which is a polynomial equation in λ

$$\sum_{\sigma \in \Sigma_n} (-1)^{\operatorname{sgn}\sigma} \prod_{i=1}^n [\lambda \delta_{\sigma(i)i} - a_{\sigma(i)i}] = 0$$

The highest power of λ occurs when σ is the identity permutation, i.e. when taking the product of the diagonal entries $\prod_i (\lambda - a_{ii}) = \lambda^n + \dots$ Thus, the leading coefficient of the polynomial is 1, so the equation is nontrivial and therefore has finitely many solutions.

Note: det $(\lambda I - A) = \lambda^n - \operatorname{tr} A \lambda^{n-1} + \dots + (-1)^n \det A$ is called the *characteristic polynomial* of A.

3. (a) Let $a, b \in A$ and $\alpha, \beta \in K$. Then $f(\alpha a + \beta b, (\kappa, \lambda)) = (\kappa(\alpha a + \beta b), \lambda(\alpha a + \beta b)) =$ $(\kappa\alpha a + \kappa\beta b, \lambda\alpha a + \lambda\beta b) = \alpha(\kappa a, \lambda a) + \beta(\kappa b, \lambda b) = \alpha f(a, (\kappa, \lambda)) + \beta f(b, (\kappa, \lambda)).$

On the other hand, $f(a, \alpha(\kappa, \lambda) + \beta(\mu, \nu)) = f(a, (\alpha\kappa + \beta\mu, \alpha\lambda + \beta\nu)) = ((\alpha\kappa + \beta\mu)a, (\alpha\lambda + \beta\nu))$ $\beta\nu)a) = (\alpha\kappa a + \beta\mu a, \alpha\lambda a + \beta\nu a) = \alpha(\kappa a, \lambda a) + \beta(\mu a, \nu a) = \alpha f(a, (\kappa, \lambda)) + \beta f(a, (\mu, \nu)).$

(b) Suppose $q: A \times K^2 \to C$ is bilinear. If we expect q' to be linear and $q = q' \circ f$, we must have g'(a,b) = g'((a,0) + (0,b)) = g'(a,0) + g'(0,b) = g'(f[a,(1,0)]) + g'(f[b,(0,1)]) =q(a, (1,0)) + q(b, (0,1)), so define q'(a,b) = q(a, (1,0)) + q(b, (0,1)).

Linearity: $g'(\mu(a,b)+\nu(c,d)) = g'(\mu a+\nu c,\mu b+\nu d) = g(\mu a+\nu c,(1,0))+g(\mu b+\nu d,(0,1)) =$ $\mu g(a,(1,0)) + \nu g(c,(1,0) + \mu g(b,(0,1)) + \nu g(d,(0,1)) = \mu(g[a,(1,0)] + g[b,(0,1)]) + \mu(g[a,(1,0)] + \mu(g[a,$ $\nu(q[c, (1, 0)] + q[d, (0, 1)]) = \mu q'(a, b) + \nu q'(c, d).$

Note: The universality of f, in particular, implies $A \otimes_K K^2 \cong A^2$, which is a special case of ((33), p. 322).

- 4. (a) $\mathbf{Z}^2 \otimes \mathbf{Z}^3 \cong \mathbf{Z}^6$
 - (b) $\mathbf{Z}^2 \otimes \mathbf{Z}_3 \cong (\mathbf{Z}_3)^2$
 - (c) $\mathbf{Z}_2 \otimes \mathbf{Z}_3 \cong 0$ (d) $\mathbf{Z}^2 \otimes \mathbf{Q} \cong \mathbf{Q}^2$

 - (e) $\mathbf{Z}_2 \otimes \mathbf{Q} \cong \mathbf{0}$

Notes: Parts (a), (b), and (d) are special cases of $A \otimes_K K^n \cong A^n$ ((33), p. 322).

(c) Since $-1 \equiv 2 \mod 3$, any pure tensor $a \otimes b = a \otimes (-2b) = (-2a) \otimes b = 0 \otimes b = 0$, but the tensor product is generated by pure tensors. By the way, this is a special case of $\mathbf{Z}_m \otimes \mathbf{Z}_n \cong \mathbf{Z}_{\text{gcd}(m,n)}$ (IX.8.1a).

(e) $a \otimes b = a \otimes 2b/2 = 2a \otimes b/2 = 0 \otimes b/2 = 0$.