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1. Let b1, b2 be a basis for F and let f ∈ Alt2F . Given x1, x2 ∈ F , there exist unique
κ11, κ12, κ21, κ22 ∈ K such that x1 = κ11b1 + κ12b2 and x2 = κ21b1 + κ22b2.

Since f is bilinear, f(x1, x2) = f(κ11b1 + κ12b2, κ21b1 + κ22b2) = κ11κ21f(b1, b1) +
κ11κ22f(b1, b2) + κ12κ21f(b2, b1) + κ12κ22f(b2, b2). Since f is alternating, f(b1, b1) =
f(b2, b2) = 0 and f(b2, b1) = −f(b1, b2), so f(x1, x2) = (κ11κ22 − κ12κ21)f(b1, b2).

Thus, any f ∈ Alt2F is a scalar multiple of the 2× 2 determinant map and the scalar in
question is unique. Therefore, the determinant map forms a basis for Alt2F .

2. Choose a basis (bi, i = 1..n) for F . We may represent L by a matrix A = (aij), whose
columns are the coefficients of the images of the basis elements under L expanded in the
same basis, i.e. L(bi) =

∑
i aijbj . The identity map is represented by the identity matrix,

also denoted by I.

The map λI−L fails to be bijective⇔ the matrix λI−A is not invertible⇔ det (λI−A)
is not a unit in K. Since K is a field, this is equivalent to det (λI − A) = 0, which is a
polynomial equation in λ

∑
σ∈Σn

(−1)sgnσ
n∏
i=1

[λδσ(i)i − aσ(i)i] = 0

The highest power of λ occurs when σ is the identity permutation, i.e. when taking the
product of the diagonal entries

∏
i(λ− aii) = λn + .... Thus, the leading coefficient of the

polynomial is 1, so the equation is nontrivial and therefore has finitely many solutions.

Note: det (λI −A) = λn − trAλn−1 + ...+ (−1)n detA is called the characteristic polynomial of A.

3. (a) Let a, b ∈ A and α, β ∈ K. Then f(αa + βb, (κ, λ)) = (κ(αa + βb), λ(αa + βb)) =
(καa+ κβb, λαa+ λβb) = α(κa, λa) + β(κb, λb) = αf(a, (κ, λ)) + βf(b, (κ, λ)).

On the other hand, f(a, α(κ, λ)+β(µ, ν)) = f(a, (ακ+βµ, αλ+βν)) = ((ακ+βµ)a, (αλ+
βν)a) = (ακa+ βµa, αλa+ βνa) = α(κa, λa) + β(µa, νa) = αf(a, (κ, λ)) + βf(a, (µ, ν)).

(b) Suppose g : A×K2→C is bilinear. If we expect g′ to be linear and g = g′ ◦f , we must
have g′(a, b) = g′((a, 0) + (0, b)) = g′(a, 0) + g′(0, b) = g′(f [a, (1, 0)]) + g′(f [b, (0, 1)]) =
g(a, (1, 0)) + g(b, (0, 1)), so define g′(a, b) = g(a, (1, 0)) + g(b, (0, 1)).

Linearity: g′(µ(a, b)+ν(c, d)) = g′(µa+νc, µb+νd) = g(µa+νc, (1, 0))+g(µb+νd, (0, 1)) =
µg(a, (1, 0)) + νg(c, (1, 0) + µg(b, (0, 1)) + νg(d, (0, 1)) = µ(g[a, (1, 0)] + g[b, (0, 1)]) +
ν(g[c, (1, 0)] + g[d, (0, 1)]) = µg′(a, b) + νg′(c, d).

Note: The universality of f , in particular, implies A⊗KK
2 ∼= A2, which is a special case of ((33), p. 322).

4. (a) Z2 ⊗ Z3 ∼= Z6

(b) Z2 ⊗ Z3
∼= (Z3)2

(c) Z2 ⊗ Z3
∼= 0

(d) Z2 ⊗Q ∼= Q2

(e) Z2 ⊗Q ∼= 0

Notes: Parts (a), (b), and (d) are special cases of A⊗K Kn ∼= An ((33), p. 322).

(c) Since −1 ≡ 2mod 3, any pure tensor a⊗b = a⊗(−2b) = (−2a)⊗b = 0⊗b = 0, but the tensor product
is generated by pure tensors. By the way, this is a special case of Zm ⊗ Zn

∼= Zgcd (m,n) (IX.8.1a).

(e) a⊗ b = a⊗ 2b/2 = 2a⊗ b/2 = 0⊗ b/2 = 0.
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