Midterm 1 solutions / 2004.3.3 / Algebra II / MAT 5313

1. Let b_{1}, b_{2} be a basis for F and let $f \in \operatorname{Alt}_{2} F$. Given $x_{1}, x_{2} \in F$, there exist unique $\kappa_{11}, \kappa_{12}, \kappa_{21}, \kappa_{22} \in K$ such that $x_{1}=\kappa_{11} b_{1}+\kappa_{12} b_{2}$ and $x_{2}=\kappa_{21} b_{1}+\kappa_{22} b_{2}$.
Since f is bilinear, $f\left(x_{1}, x_{2}\right)=f\left(\kappa_{11} b_{1}+\kappa_{12} b_{2}, \kappa_{21} b_{1}+\kappa_{22} b_{2}\right)=\kappa_{11} \kappa_{21} f\left(b_{1}, b_{1}\right)+$ $\kappa_{11} \kappa_{22} f\left(b_{1}, b_{2}\right)+\kappa_{12} \kappa_{21} f\left(b_{2}, b_{1}\right)+\kappa_{12} \kappa_{22} f\left(b_{2}, b_{2}\right)$. Since f is alternating, $f\left(b_{1}, b_{1}\right)=$ $f\left(b_{2}, b_{2}\right)=0$ and $f\left(b_{2}, b_{1}\right)=-f\left(b_{1}, b_{2}\right)$, so $f\left(x_{1}, x_{2}\right)=\left(\kappa_{11} \kappa_{22}-\kappa_{12} \kappa_{21}\right) f\left(b_{1}, b_{2}\right)$.
Thus, any $f \in \operatorname{Alt}_{2} F$ is a scalar multiple of the 2×2 determinant map and the scalar in question is unique. Therefore, the determinant map forms a basis for $\mathrm{Alt}_{2} F$.
2. Choose a basis $\left(b_{i}, i=1 . . n\right)$ for F. We may represent L by a matrix $A=\left(a_{i j}\right)$, whose columns are the coefficients of the images of the basis elements under L expanded in the same basis, i.e. $L\left(b_{i}\right)=\sum_{i} a_{i j} b_{j}$. The identity map is represented by the identity matrix, also denoted by I.
The map $\lambda I-L$ fails to be bijective \Leftrightarrow the matrix $\lambda I-A$ is not invertible $\Leftrightarrow \operatorname{det}(\lambda I-A)$ is not a unit in K. Since K is a field, this is equivalent to $\operatorname{det}(\lambda I-A)=0$, which is a polynomial equation in λ

$$
\sum_{\sigma \in \Sigma_{n}}(-1)^{\operatorname{sgn} \sigma} \prod_{i=1}^{n}\left[\lambda \delta_{\sigma(i) i}-a_{\sigma(i) i}\right]=0
$$

The highest power of λ occurs when σ is the identity permutation, i.e. when taking the product of the diagonal entries $\prod_{i}\left(\lambda-a_{i i}\right)=\lambda^{n}+\ldots$. Thus, the leading coefficient of the polynomial is 1 , so the equation is nontrivial and therefore has finitely many solutions.
Note: $\operatorname{det}(\lambda I-A)=\lambda^{n}-\operatorname{tr} A \lambda^{n-1}+\ldots+(-1)^{n} \operatorname{det} A$ is called the characteristic polynomial of A.
3. (a) Let $a, b \in A$ and $\alpha, \beta \in K$. Then $f(\alpha a+\beta b,(\kappa, \lambda))=(\kappa(\alpha a+\beta b), \lambda(\alpha a+\beta b))=$ $(\kappa \alpha a+\kappa \beta b, \lambda \alpha a+\lambda \beta b)=\alpha(\kappa a, \lambda a)+\beta(\kappa b, \lambda b)=\alpha f(a,(\kappa, \lambda))+\beta f(b,(\kappa, \lambda))$.
On the other hand, $f(a, \alpha(\kappa, \lambda)+\beta(\mu, \nu))=f(a,(\alpha \kappa+\beta \mu, \alpha \lambda+\beta \nu))=((\alpha \kappa+\beta \mu) a,(\alpha \lambda+$ $\beta \nu) a)=(\alpha \kappa a+\beta \mu a, \alpha \lambda a+\beta \nu a)=\alpha(\kappa a, \lambda a)+\beta(\mu a, \nu a)=\alpha f(a,(\kappa, \lambda))+\beta f(a,(\mu, \nu))$.
(b) Suppose $g: A \times K^{2} \rightarrow C$ is bilinear. If we expect g^{\prime} to be linear and $g=g^{\prime} \circ f$, we must have $g^{\prime}(a, b)=g^{\prime}((a, 0)+(0, b))=g^{\prime}(a, 0)+g^{\prime}(0, b)=g^{\prime}(f[a,(1,0)])+g^{\prime}(f[b,(0,1)])=$ $g(a,(1,0))+g(b,(0,1))$, so define $g^{\prime}(a, b)=g(a,(1,0))+g(b,(0,1))$.
Linearity: $g^{\prime}(\mu(a, b)+\nu(c, d))=g^{\prime}(\mu a+\nu c, \mu b+\nu d)=g(\mu a+\nu c,(1,0))+g(\mu b+\nu d,(0,1))=$ $\mu g(a,(1,0))+\nu g(c,(1,0)+\mu g(b,(0,1))+\nu g(d,(0,1))=\mu(g[a,(1,0)]+g[b,(0,1)])+$ $\nu(g[c,(1,0)]+g[d,(0,1)])=\mu g^{\prime}(a, b)+\nu g^{\prime}(c, d)$.

Note: The universality of f, in particular, implies $A \otimes_{K} K^{2} \cong A^{2}$, which is a special case of ((33), p. 322).
4. (a) $\mathbf{Z}^{2} \otimes \mathbf{Z}^{3} \cong \mathbf{Z}^{6}$
(b) $\mathbf{Z}^{2} \otimes \mathbf{Z}_{3} \cong\left(\mathbf{Z}_{3}\right)^{2}$
(c) $\mathbf{Z}_{2} \otimes \mathbf{Z}_{3} \cong 0$
(d) $\mathbf{Z}^{2} \otimes \mathbf{Q} \cong \mathbf{Q}^{2}$
(e) $\mathbf{Z}_{2} \otimes \mathbf{Q} \cong 0$

Notes: Parts (a), (b), and (d) are special cases of $A \otimes_{K} K^{n} \cong A^{n}$ ((33), p. 322).
(c) Since $-1 \equiv 2 \bmod 3$, any pure tensor $a \otimes b=a \otimes(-2 b)=(-2 a) \otimes b=0 \otimes b=0$, but the tensor product is generated by pure tensors. By the way, this is a special case of $\mathbf{Z}_{m} \otimes \mathbf{Z}_{n} \cong \mathbf{Z}_{\mathrm{gcd}(m, n)}$ (IX.8.1a).
(e) $a \otimes b=a \otimes 2 b / 2=2 a \otimes b / 2=0 \otimes b / 2=0$.

