Midterm 2 / 2011.11.28 / MAT 5243.001 / General Topology I

1. Prove that a continuous real-valued function on a topological space that is zero on a dense subset must be the zero function.

Notation: X is the space; D is the dense subset; f is the function.

The singleton $\{0\}$ and its complement \mathbf{R}^* partition \mathbf{R} , so their inverse images partition X. Since $D \subseteq f^{-1}(\{0\})$ (closed since f is continuous), $X = \overline{D} \subseteq f^{-1}(\{0\})$.

Question: What does this say about continuous extensions of real-valued functions on a dense subset?

2. Given a family of topological spaces, pick a subset in each and prove that in general, the product of the subsets' closures is the closure of their product.

Notation: $\{X_{\alpha}\}$ is the family of spaces; $X = \prod_{\alpha} X_{\alpha}$; $\pi_{\alpha} : X \to X_{\alpha}$ are the natural continuous projections; $\{E_{\alpha} \subseteq X_{\alpha}\}$ is the family of subsets.

The box $\prod_{\alpha} \overline{E_{\alpha}} = X \setminus \bigcup_{\alpha} \pi_{\alpha}^{-1}(X_{\alpha} \setminus \overline{E_{\alpha}})$ is closed. Since $\prod_{\alpha} E_{\alpha} \subseteq \prod_{\alpha} \overline{E_{\alpha}}$, we have $\overline{\prod_{\alpha} E_{\alpha}} \subseteq \prod_{\alpha} \overline{E_{\alpha}}$.

Alternate solution: Suppose $x \in \overline{\prod_{\alpha} E_{\alpha}}$. Then $\prod_{\alpha} E_{\alpha}$ has a net $x_{\lambda} \to x$. Since π_{α} is continuous, $\pi_{\alpha}(x_{\lambda}) \to \pi_{\alpha}(x)$, so $\pi_{\alpha}(x) \in \overline{E_{\alpha}}$, so $x \in \prod_{\alpha} \overline{E_{\alpha}}$.

Conversely, let $x \in \prod_{\alpha} \overline{E_{\alpha}}$ and let $U = \bigcap_{i=1}^{n} \pi_{\alpha_{i}}^{-1}(U_{\alpha_{i}})$ $(U_{\alpha_{i}} \text{ open in } X_{\alpha_{i}})$ be a basic neighbourhood of x. Since $\pi_{\alpha_{i}}(x) \in \overline{E_{\alpha_{i}}}$, there exists $x_{\alpha_{i}} \in E_{\alpha_{i}} \cap U_{\alpha_{i}}$. Any x' such that $\pi_{\alpha}(x') \in E_{\alpha}$ in general, and in particular $\pi_{\alpha_{i}}(x') = x_{\alpha_{i}}$, is in $(\prod_{\alpha} E_{\alpha}) \cap U$. Thus, $x \in \prod_{\alpha} E_{\alpha}$.

Question: What happens if we replace the product topology on X with the box topology?

- 3. Suppose X is a topological space and $A \subseteq X$. Recall that A is a retract of X whenever there exists an onto continuous function $X \to A$ that is indentity on A.
 - (a) Prove that A is a retract of X if and only if any continuous function on A can be extended to X.

Let $f: X \to A$ be a retraction and suppose g is a continuous function on A. Then $g \circ f$ is an extension of g to X.

Conversely, a continuous extension of the identity on A is a retraction.

- (b) Prove that if X is Hausdorff, then A must be closed in X.
 - Suppose x_{λ} is a net in A convergent to x. Since the retraction f is continuous, $f(x_{\lambda}) = x_{\lambda}$ converges to f(x) in A. Since X is Hausdorff, limits are unique, so x = f(x), so $x \in A$.
- (c) Prove that the unit circle in the plane is a retract of the plane punctured at the origin.

The map $f: \mathbb{C}^* \to S^1$ given by f(z) = z/|z| is a retraction.

4. Given a point in a discrete space, which filters converge to that point? What happens in a trivial space?

In the discrete topology $\{x\}$ is an open neighbourhood of x, so if $\mathcal{F} \to x$, we have $\{x\} \in \mathcal{F}$, so any superset of $\{x\}$ is in \mathcal{F} . Conversely, any element of \mathcal{F} must meet $\{x\}$, so \mathcal{F} is the ultrafilter of all subsets containing x.

In the trivial topology the only open neighbourhood of x is the whole space, which belongs to every \mathcal{F} , so any $\mathcal{F} \to x$.

5. Prove that the intersection of compact subsets of a Hausdorff space is compact.

Notation: X is the Hausdorff space; $\{K_{\alpha} \subseteq X\}$ is the family of compact subsets.

Since X is Hausdorff, each K_{α} is closed, so $\bigcap_{\alpha} K_{\alpha}$ is closed. Since the latter is a closed subset of a compact space (pick any K_{α}), it is compact.

Question: Can you come up with a counterexample if X is not Hausdorff?