1 (cf. II.13a, II.3.2, II.3.9) Since \mathbf{Z}_{4} is generated by 1 , an endomorphism f is uniquely determined by $f(1)$. The relation satisfied by 1 is $1+1+1+1=0$, so since $f(0)=0$ we must have $f(1)+f(1)+f(1)+f(1)=0$. This is automatically satisfied by any element of \mathbf{Z}_{4}. Thus, we may choose $f(1)$ to be any element of \mathbf{Z}_{4}. This means that there are 4 possible choices for $f(1)$ and, therefore, 4 endomorphisms of \mathbf{Z}_{4}.
In order for f to be an automorphism, $f(1)$ must be a generator of \mathbf{Z}_{4}. Since neither 0 nor 2 generate all of \mathbf{Z}_{4}, we must have $f(1)=1$ or $f(1)=3$. Thus, there are 2 automorphisms of \mathbf{Z}_{4} : the identity and the permutation $(1,3)$. Any group generated by an element of order 2 is isomorphic to \mathbf{Z}_{2}, so since $\operatorname{Aut}\left(\mathbf{Z}_{4}\right)$ is generated by the 2-cycle (1,3), we have $\operatorname{Aut}\left(\mathbf{Z}_{4}\right) \cong \mathbf{Z}_{2}$.

2 (cf. II.8.4) $H=\{(n, 2 n): n \in \mathbf{Z}\}$ and its cosets are of the form $(x, y)+H=\{(n+x, 2 n+y): n \in \mathbf{Z}\}$, where $(x, y) \in \mathbf{R}^{2}$.

- H
- $(1,-2)+H$
$\Delta(3,0)+H$
$\times(0.5,1)+H$

3 (a) Let $a \in \operatorname{ker} f$ and $x \in G$. Then $f\left(x a x^{-1}\right)=f(x) f(a) f\left(x^{-1}\right)=f(x) f\left(x^{-1}\right)=f\left(x x^{-1}\right)=f(1)=1$, so $x a x^{-1} \in \operatorname{ker} f$.
(b) Let $H=S_{3}, G=S_{2}$, and $f: S_{2} \rightarrow S_{3}$ the inclusion morphism.

The image of f contains $(1,2)$, but not $(2,3)(1,2)(2,3)^{-1}=(2,3)(1,2)(2,3)=(1,3)$.
4 (cf. III.1.5) If $f: \mathbf{Z}_{2} \rightarrow \mathbf{Z}$ is a group morphism, then $f(1)=1$ and $0=f(0)=f(1+1)=f(1)+f(1)$, so $f(1)=0$, so $f=0$. Ring morphisms must preserve 1 , so there are no ring morphisms and only the zero group morphism $\mathbf{Z}_{2} \rightarrow \mathbf{Z}$.

5 (cf. III.7.3) If f is a ring morphism $\mathbf{Z}_{2}[x] \rightarrow \mathbf{Z}_{2}[x]$, we have $f(0)=0$ and $f(1)=1$, so f preserves constants.
If $\sum_{k=0}^{n} a_{k} x^{k} \in \mathbf{Z}_{2}[x]$, then $f\left[\sum_{k=0}^{n} a_{k} x^{k}\right]=\sum_{k=0}^{n} f\left(a_{k}\right) f\left(x^{k}\right)=\sum_{k=0}^{n} a_{k} f(x)^{k}$.
In other words, f is evaluation at $f(x)$. In order for f to be invertible, $f(x)$ must have degree 1 . The only two polynomials of degree 1 in $\mathbf{Z}_{2}[x]$ are x and $x+1$. Therefore, there are 2 automorphisms of $\mathbf{Z}_{2}[x]$.

6 (cf. III.13.10, III.7.5) A ring morphism $f: \mathbf{Q}[x] \rightarrow \mathbf{Q}$, must preserve constants (therefore onto) and is uniquely determined by $f(x)$. In light of the main theorem on quotient rings (domain/kernel \cong image), it suffices to find f with kernel J. In particular, we want $0=f(x+1)=f(x)+1$, so choose $f(x)=-1$. In other words, let f be evaluation at -1 , i.e. $f\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)=a_{0}-a_{1}+a_{2}-\ldots$
To prove that ker $f=J$ let $p \in J$. Then $p(x)=(x+1) q(x)$ for some $q \in \mathbf{Q}[x]$, so $f(p)=f((x+1) q)=f(x+1) f(q)=$ $0 \cdot f(q)=0$, so $p \in \operatorname{ker} f$. Conversely, suppose $p \in \operatorname{ker} f$. Then $f(p(x))=p(-1)=0$, so $x+1$ divides p [proof: by the division algorithm $p(x)=(x+1) q(x)+r$ for some $q(x) \in \mathbf{Q}[x]$ and $r \in \mathbf{Q}$; substituting $x=-1$ gives $r=0]$, so $p \in J$.

