1. Let $\alpha = (3, 5, 1)(4, 2, 1, 3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{11} .

$$\alpha = (15)(234)$$
By Ruffini's theorem $|x| = lcm(2,3) = 6$
Panity of α : odd + even = odd
$$ll = (+2.5 = 2+3.3)$$

$$\alpha'' = (15)''(234)'' \quad (because disjoint cycles commute)$$

$$= (15)^{1+2.5}(234)^{2+3.3}$$

$$= (15)^{1}((15)^{2})^{5}(234)^{2}((234)^{3})^{3}$$

$$= (15)(234)^{2} = (15)(243)$$

2. Prove that the set of all rotations in the dihedral group D_n is a normal subgroup. What can you say about the quotient group?

1st isomorphism theorem:
$$\frac{D_n}{\ker(\det)} \stackrel{N}{=} \inf_{z_2} (\det)$$

3. Suppose $\varphi : \mathbf{Z}_{15} \to \mathbf{Z}_3 \oplus \mathbf{Z}_5$ is a group isomorphism. If $\varphi(2) = [2,3]$, what is $\varphi(1)$?

Since
$$16 \equiv 1 \mod 15$$
 $\varphi(1) = \varphi(16)$
 $= \varphi(8.2) = 8 \varphi(2) = 8 [2,3] = [16,24] = [1,4]$
Check: $2[1,4] = [2,8] = [2,3]$ \therefore
Alternate method: $\varphi(2) = \varphi(2.1) = 2 \varphi(1)$
 $2\varphi(1) = [2,3] = [2,8] = 2[1,4]$

- 4. Suppose S is a ring with p elements, where p is prime.
 - (a) Show that as an additive group (ignoring multiplication for the moment), S is cyclic. Hint: Consider the subgroup generated by a nonzero element of S.
 - (b) Show that S is a commutative ring. Hint: Use part (a).

a) Since
$$p>1$$
, S is non-trivial, so let $a \in S \setminus \{0\}$
Then $|\langle a \rangle|$ divides p (by Lagrange's theorem)
and > 1 , so $|\langle a \rangle| = p$
 $\therefore S = \langle a \rangle = \{n a : n \in \mathbb{Z}\}$
Alt.: By the classification theorem for privite Abelian
 $S \cong \mathbb{Z}p$
b) Let ia , $ja \in S$ -
 $ia \cdot ja = ij \cdot a^2 = ja \cdot ia$
For example $(3k)(-2a) =$
 $= (a + a + a)(-a - a) = -a^2 - a^2 - a^2 - a^2 - a^2}$
Similarly: $(-2a)(3a) = \dots = -6a^2$ \square