1. Let $\alpha=(3,5,1)(4,2,1,3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{11}.

$$
\alpha=(15)(234)
$$

By Ruffini's theorem $|\alpha|=\operatorname{lcm}(2,3)=6$

$$
\left.\begin{array}{l}
\text { Parity of } \alpha: \text { odd }+ \text { even }=\text { odd } \\
11=1+2 \cdot 5=2+3 \cdot 3 \\
\alpha^{\prime \prime}=(15)^{71}(234)^{11} \quad \text { (because disjoint cycles } \\
\text { commute) }
\end{array}\right] \begin{aligned}
& 15)^{1+2 \cdot 5}\left(\begin{array}{ll}
2 & 34
\end{array}\right)^{2}+3 \cdot 3 \\
& =(15)^{1}(\underbrace{(15)^{2}}_{\varepsilon})^{5}\left(\begin{array}{ll}
2 & 3
\end{array}\right)^{2}(\underbrace{\left(\begin{array}{ll}
2 & 3
\end{array}\right)^{3}}_{\varepsilon})^{3} \\
& =\left(\begin{array}{ll}
1 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 3
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)
\end{aligned}
$$

2. Prove that the set of all rotations in the dihedral group D_{n} is a normal subgroup. What can you say about the quotient group?
(i) Let: $D_{2} \rightarrow\{1,-1\}$ is a group hon Since et is multiplicative.

$$
\begin{aligned}
\{\text { all rotations }\}= & \operatorname{det}^{*}(\{1\})=\text { er (det) } \\
& (\{1\}<\{1,-1\})
\end{aligned}
$$

Also, note $\{1\} \triangle\{1,-1\}$ (because $\{1,-1\}$ is Aphelian (or because $\{1\}$ is a la rays normal)

$$
\therefore\{\text { all rotations }\}<D_{n}
$$

$$
\begin{aligned}
& =\{1,-1\} \\
& \cong \mathbb{Z}_{2}
\end{aligned}
$$

3. Suppose $\varphi: \mathbf{Z}_{15} \rightarrow \mathbf{Z}_{3} \oplus \mathbf{Z}_{5}$ is a group isomorphism. If $\varphi(2)=[2,3]$, what is $\varphi(1)$?

Since $16 \equiv 1 \bmod 15 \quad \varphi(1)=\varphi(16)$

$$
=\varphi(8 \cdot 2)=8 \varphi(2)=8[2,3]=[16,24]=[1,4]
$$

Check: $\quad 2[1,4]=[2,8]=[2,3] \quad$ ت̈
Alternate method: $\varphi(2)=\varphi(2.1)=2 \varphi(1)$

$$
2 \varphi(1)=[2,3]=[2,8]=2[1,4]
$$

4. Suppose S is a ring with p elements, where p is prime.
(a) Show that as an additive group (ignoring multiplication for the moment), S is cyclic. Hint: Consider the subgroup generated by a nonzero element of S.
(b) Show that S is a commutative ring.

Hint: Use part (a).
a) Since $p>1 \quad S$ is nontrivial, so let $a \in S \backslash\{0\}$ Then $|\langle a\rangle|$ dines p (by Lagrange's theorem) and >1, so $|\langle a\rangle|=p$

$$
\therefore \quad S=\langle a\rangle=\{n a: n \in \mathbb{Z}\}
$$

Alt.: By the classification theoven for finite Abctian groups

$$
\begin{aligned}
& \text { b) Let ia, ja } \in S \text { - } \\
& \text { ia.ja }=i j \cdot a^{2}=j a \cdot i a \\
& \text { For example }(3 a)(-2 a)= \\
& =(a+a+a)(-a-a)=-a^{2}-a^{2}-a^{2}-a^{2}-a^{2}-a^{2} \\
& \text { Similarly: }=-6 a^{2}
\end{aligned}
$$

