
Midterm 2 / 2019.11.26 / MAT 4233.001 / Modern Abstract Algebra

1. Let α = (3, 5, 1)(4, 2, 1, 3) be a permutation (in cycle notation). Express α as a product
of disjoint cycles. What are the order and the parity of α? Explain. Simplify α11.
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2. Prove that the set of all rotations in the dihedral group Dn is a normal subgroup. What
can you say about the quotient group?
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3. Suppose ϕ : Z15→Z3 ⊕ Z5 is a group isomorphism. If ϕ(2) = [2, 3], what is ϕ(1)?
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4. Suppose S is a ring with p elements, where p is prime.

(a) Show that as an additive group (ignoring multiplication for the moment), S is cyclic.

Hint: Consider the subgroup generated by a nonzero element of S.

(b) Show that S is a commutative ring.

Hint: Use part (a).
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