- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m,n) divides any common multiple of m and n.

Given
$$n, n \in \mathbb{N}$$

a) any common divisor of $n \notin m$ divides
ged (n,m)
PE By Béront $\exists S, t \in \mathbb{Z}$ ged $(n,n) = Sn + tm$
Suppose d is a common divisor of $n \notin m$
Then $\exists j, \& St. n = jd$, $m = kd$
So $ged(n,m) = Sn + tm = Sjd + tkd = (Sj + tk)d$
 $\therefore d$ divides $ged(n,m)$
b) any common multiple of $n \notin m$ is
divisible by $fcm(n,m)$ (=l)
Pf bet arobe a common multiple of m and n .
Use div. algorithm : $\exists ! q, r \in \mathbb{Z}$ e.t.
 $a = ql + r$ and $o \le r < l$
Since $a \in S$, so $S \neq d$, is S has a min
and by def. $l = min S$
 $r = a - ql$ $\therefore r$ is a common multiple of
 $mathyle of n & m$ if $r > 0$, then $r < S$
But $r < l$ $ö$
 $\therefore l$ divides a i

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

•

2. Suppose H is a subgroup of **Z** that contains two distinct primes. Prove that $H = \mathbf{Z}$.

Suppose
$$p,q$$
 are primes, $p,q \in H$ and $p \neq q$
then $gcd(p,q)=l = sp+tq$ for some $s,t \in \mathbb{Z}$
Since $p \in H$, $sp \in H$ (e.g. $p \in H \Rightarrow -p \in H$
Similarly $tq \in H$
So $l = sp+tq \in H$
So $\forall k \in \mathbb{Z}$ $k = k \cdot l \in H$ \therefore $H = \mathbb{Z}$ i

3. Sketch the subgroup lattice for \mathbf{Z}_{18} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.

Divisors of
$$18 : 1, 2, 3, 6, 9, 18$$

(1) = $\mathbb{Z}_{18} = \{0, (, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\}$
(2) = $\{0, 2, 4, 6, 8, 10, 12, 14, 16\}$
(3) = $\{0, 3, 6, 9, (2, 15]\}$
(6) = $\{0, 6, 12\}$ generators
(6) = $\{0, 6, 12\}$ generators
(9) = $\{0, 9, 9\}$
(18) = $\{0\} = \{0\} = \{0\}$
(18) = $\{0\} = \{0\} = \{0\}$
(18) = $\{0\} = \{0\} = \{0\}$

- 4. Consider the set of all complex cube roots of unity $H = \{z \in \mathbb{C}: z^3 = 1\}$
 - (a) Show H is a subgroup of the multiplicative group of nonzero complex numbers \mathbf{C}^* .
 - (b) How many elements does H have? List them.

е^{2π}

<u>(=</u>>

a) Direct proof:
(i)
$$1^{3} = 1$$
, so $1 \in H$
(ii) $1^{3} = 1$, so $1 \in H$
(iii) clowre: $1 \notin 2$, $w \notin H$, $t \mod 2^{3} \equiv w^{3} = 1$,
so $(2w)^{3} = 2^{3}w^{3} = 1 \cdot 1 = 1$ so $2w \notin H$
(iii) inverses: $1 \notin 2 \notin H$, $2 \neq 0$, so $3 \geq 2^{-1}$
Also $2 \geq^{-1} = 1$, so $0^{3} = 0 \neq 1$ so $0 \notin H$
 $(2 \geq^{-1})^{3} = 1^{2} = 1$, so $0^{3} = 0 \neq 1$ so $0 \notin H$
 $(2 \geq^{-1})^{3} = 1^{2} = 1$, so $(2^{-1})^{2} = 1$ so $1 \cdot (2^{-1})^{3} = 1$
so $1 \cdot (2^{-1})^{3} = 1$ so $(2^{-1})^{2} = 1$ so $2^{-1} \notin H$
Francy proof: Define $\psi \in C^{*} \to C^{*}$ by $\psi(z) = z^{3}$
(ψ is a han: $1 \oint 2y \in C^{*} + (2w) = (2w)^{2} = 2^{3}w^{-2} = \psi(z)\psi(w)$
Then $H(z \ker \psi$ so H is a subgroup.
(b) $1 \oint 2z \neq 1$, then $z^{3} = 1$ so $|2^{3}| = |1$, $|z|^{3} = 1$
Since $|z| > 0$ (in \mathbb{R}^{+}), $|z| = 1$: $z = e^{i\theta}$
Since $z \notin H$ $(e^{i\theta})^{3} = 1$, i.e. $e^{i3\theta} = 1$
so $3 \oint 2\theta = 2\pi k$, so $z = e^{i\theta} = e^{2\pi k i/3}$
: $H = \begin{cases} e^{2\pi k i/2} : k \in \mathbb{Z} \end{cases}$
 $e^{2\pi k i/3} = i \iff 2 |w|^{3} = 1$ $\Leftrightarrow 2 |w|^{3} = 1$ $\Leftrightarrow 2\pi (k-j)/3 = 1$ \Leftrightarrow
 $2\pi (k-j)/3 = 2\pi n$ for some $n \in \mathbb{Z}$ $\Leftrightarrow 3 | k-j \iff k = j \mod 3$
: $|H| = |Z_{3}| = 3$ $H = \begin{cases} e^{2\pi k i/2} : k = 0, |z|^{3} = 2 | |z|^{3} = 2 |z|^{3} =$

- 5. With H as in the preceding problem, define a function $\varphi \colon \mathbf{Z} \to H$ by $\varphi(k) = e^{2k\pi i/3}$.
 - (a) Prove that φ is a group homomorphism.
 - (b) Is φ 1-1? Onto? Explain.

a)
$$|f + j \in \mathbb{Z} - q(k+j) = e^{2\pi(k+j)j/3}$$

= $e^{2\pi i h j/3} \cdot e^{2\pi i j j/3} = q(k) \cdot q(j)$

b)
$$(p \text{ is onto: } 1 = \phi(0), e^{2\pi i/3} = \phi(1), e^{4\pi i/3} = \phi(2)$$

e.q. here
$$\varphi = \{ le : \varphi(le) = 1\} = \{ \varphi^*(\{1\}) = \{ 0, \pm 3, \pm 6, \pm 9, \dots \} = 3\mathbb{Z}$$

 $\varphi^*(\{ le^{2\pi i/3}\}) = \{ \dots, -2, 1, 4, 7, \dots \} = 3\mathbb{Z} + 1$
 $\varphi^*(\{ le^{4\pi i/3}\}) = 3\mathbb{Z} + 2$