
Final exam / 2019.12.9 / MAT 4233.001 / Modern Abstract Algebra

1. Suppose x is an element of a finite group G. Show that

(a) x has finite order (denote it k),

(b) xn = e if and only if k divides n,

(c) x|G| = e.
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2. Sketch the subgroup lattice for Z12. For each subgroup, list all the elements and indicate
all possible generators of the subgroup.
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3. Define a function from the integers to the multiplicative group of nonzero complex num-
bers ϕ : Z→C∗ by ϕ(k) = e2kπi/5.

(a) Prove that ϕ is a group homomorphism.

(b) What subgroup of Z is the kernel of ϕ?

(c) Sketch the image of ϕ.

(d) What does the first isomorphism theorem tell you about fifth roots of unity?
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4. Suppose an element x of the dihedral group Dn is a composition (in an arbitrary order)
of j rotations and k reflections (flips). [Example: x = r3f2r1r2f1 with j = 3 and k = 2]
Under what conditions on j and k is x a rotation? A reflection? Explain.
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5. Let α = (1, 2, 5, 4)(2, 6, 3)(5, 6, 3, 2, 1) be a permutation (in cycle notation). Express α as
a product of disjoint cycles. What is the order of α? Simplify α61.
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6. Prove that the set An of all even permutations in the symmetric group Sn is a normal
subgroup. What can you say about the quotient group Sn/An? Give a concrete example
of a subgroup of S3 that is not normal. Explain.
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7. How many group homomorphisms from Z12 to Z3 ⊕ Z4 are there? How many of them
are isomorphisms? If ϕ is such an isomorphism with ϕ(2) = [1, 3], what is ϕ(1)?
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8. Suppose R is a commutative ring with unity. Show that the set of all units (elements that
have a mutliplicative identity) in R is a multiplicative group under the same multiplication
as R.
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