1. Suppose x is an element of a finite group G. Show that
(a) x has finite order (denote it k),
(b) $x^{n}=e$ if and only if k divides n,
(c) $x^{|G|}=e$.
(a) By the pigeonhole principle $x^{n}, n=0,1, \ldots$ are $n \Omega$ all distinct, to $\exists m>n \quad x^{m}=x^{n}$ Then $m-n>0$ and $x^{m-n}=e$, so x has finite order.
(b) Let $S=\left\{n>0: x^{n}=e\right\}$. Then $k=|x|=\min S$. If $k \mid n \quad \exists j \quad n=k j$ so $x^{n}=\left(x^{k}\right)^{j}=e^{j}=e$.

Conversely suppose $x^{n}=e$. By the division algorithm J! q ir $n=k q+r \quad 0 \leqslant r<k$
Then $x^{n}=x^{k q+r}=\left(x^{k}\right)^{q} x^{r}=e^{q} x^{r}=x^{r}$, se $x^{r}=e$ If $r>0, r \in S \quad \ddot{ } \quad \therefore r=0$ so $k \mid n \quad \ddot{u}$
(c) By Langrange's theorem $k=|x|=|\langle x\rangle|$ divides $|G|$. Thus, by (b) $\quad x^{|G|}=e$.
2. Sketch the subgroup lattice for \mathbf{Z}_{12}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.

Divisors of $12: 1,2,3,4,6,12$
Subgroups: $\mathbb{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10, \underline{11}\}$

$$
\begin{aligned}
& 2 \mathbb{Z}_{12}=\{0,2,4,6,8,10\} \\
& 3 \mathbb{Z}_{12}=\{0,3,6,9\} \\
& 4 \mathbb{Z}_{12}=\{0,4,8\} \\
& 6 \mathbb{Z}_{12}=\{0, \underline{6}\} \\
& 12 \mathbb{Z}_{12}=\{0\}
\end{aligned}
$$

Possible generators underlined.

3. Define a function from the integers to the multiplicative group of nonzero complex numbgers $\varphi: \mathbf{Z} \rightarrow \mathbf{C}^{*}$ by $\varphi(k)=e^{2 k \pi i / 5}$.
(a) Prove that φ is a group homomorphism.
(b) What subgroup of \mathbf{Z} is the kernel of φ ?
(c) Sketch the image of φ.
(d) What does the first isomorphism theorem tell you about fifth roots of unity?

$$
\text { (a) } \begin{aligned}
\varphi(j+k)=e^{2(j+k) \pi i / 5} & =e^{2 j \pi i / 5+2 k \pi i / 5} \\
=e^{2 j \pi i / 5} \cdot e^{2 k \pi i / 5} & =\varphi(j) \cdot \varphi(k) \quad \ddot{ت}
\end{aligned}
$$

(b) $k \in \operatorname{ker} \varphi \Leftrightarrow \varphi(k)=1 \Leftrightarrow e^{2 k \pi i / s}=1$

$$
\begin{aligned}
& \Leftrightarrow \exists n \in \mathbb{Z} 2 k \pi / 5=2 n \pi \Leftrightarrow \exists n \in \mathbb{Z} k=5 n \\
& \Leftrightarrow k \in 5 \mathbb{Z} \quad \therefore \operatorname{ker} \varphi=5 \mathbb{Z}=\{0, \pm 5, \pm 10, \ldots\}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{image}(\varphi) & =H=\left\{z \in \mathbb{C}: z^{5}=1\right\} \\
& =\left\{e^{2 k \pi i}: k=0,1,2,3,4\right\}
\end{aligned}
$$

(d)

$$
\frac{\mathbb{Z}}{\operatorname{ker} \varphi} \cong \operatorname{linge}(\varphi) \quad \therefore \quad \frac{\mathbb{Z}_{2}}{5 \pi} \cong H \quad \therefore H \cong \mathbb{Z}_{5}
$$

4. Suppose an element x of the dihedral group D_{n} is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x=r_{3} f_{2} r_{1} r_{2} f_{1}$ with $j=3$ and $k=2$] Under what conditions on j and k is x a rotation? A reflection? Explain.

If k is even x is orientation preserving (a rotation). If k is odd x is orientation reverting (a flip).
5. Let $\alpha=(1,2,5,4)(2,6,3)(5,6,3,2,1)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What is the order of α ? Simplify α^{61}.

$$
\alpha=(1,4)(3,6,5) \quad \text { Parity odd +even }=\text { odd }
$$

By Rnffini's theorem $|\alpha|=\operatorname{lem}(2,3)=6$

$$
61=1+2 \cdot 30=1+3 \cdot 20
$$

Since disjoint cycles commute, $\alpha^{61}=(1,4)^{61}(3,6,5)^{61}$

$$
\begin{aligned}
& =(1,4)^{1+2 \cdot 30}(3,6,5) 1+3 \cdot 20 \\
& =(1,4)(\underbrace{(1,4)^{2}}_{\varepsilon})^{30}(3,6,5)(\underbrace{(3,6,5)^{3}}_{\varepsilon})^{20}=(1,4)(3,6,5)=\alpha
\end{aligned}
$$

6. Prove that the set A_{n} of all even permutations in the symmetric group S_{n} is a normal subgroup. What can you say about the quotient group S_{n} / A_{n} ? Give a concrete example of a subgroup of S_{3} that is not normal. Explain.
$A_{n}=\operatorname{ker} \varphi$, where $\varphi: S_{n} \rightarrow \mathbb{Z}_{2}$ is the homomorphism given by $P(\alpha)= \begin{cases}0 & \text { if } \alpha \text { is even } \\ 1 & \text { if } \alpha \text { is od }\end{cases}$

$$
\therefore A_{n} \otimes S_{n} \simeq
$$

Alt: Since $\left|A_{n}\right|=\left|S_{n} \backslash A_{n}\right|=\frac{n!}{2}$,
The on'n option for a nontrivial coset (right or left) of A_{n} is $S_{n} \backslash A_{n} \quad \ddot{\sim}$

Since there are 2 coset of $A_{n}, \quad \frac{S_{n}}{A_{n}} \cong \mathbb{Z}_{2}$
Also: Since φ is onto, $1^{\text {st }}$ iso. the says $\hat{1}$
let $H=\{\varepsilon,(1,2)\}<S_{3}$
Then $(1,3) H=\{(1,3),(1,2,3)\}$

$$
H(1,3)=\{(1,3),(1,3,2)\}
$$

are $n \Omega$ equal so $H \notin S_{3}$
7. How many group homomorphisms from \mathbf{Z}_{12} to $\mathbf{Z}_{3} \oplus \mathbf{Z}_{4}$ are there? How many of them are isomorphisms? If φ is such an isomorphism with $\varphi(2)=[1,3]$, what is $\varphi(1)$?

A how $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$ is uniquely determined by $\varphi(1)$. In $\mathbb{Z}_{12} 1$ has order 12 , but by by Lagrange's theorem any element of $\mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$ has order that divides $\left|\mathbb{Z}_{3} \oplus \mathbb{Z}_{4}\right|=12$, so the choice of $\varphi(1)$ is free.
\therefore There are 12 homomorphisms $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$
For φ to be an isomorphism. $\varphi(1)$ must be a generator of $\mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$, so the components of $\varphi(1)$ must be generators of \mathbb{Z}_{3} and \mathbb{Z}_{4} choices: $\mathbb{Z}_{3}: 1,2 \quad \mathbb{Z}_{4}: 1,3 \quad$ Total: $2 \cdot 2=4$

If $\varphi(2)=[1,3]$, then since $[1,3]$ generates $\mathbb{Z}_{3} \oplus \mathbb{Z}_{4}$ and 2 does not generate \mathbb{Z}_{12} φ cannot be an isomorphism.
8. Suppose R is a commutative ring with unity. Show that the set of all units (elements that have a mutliplicative identity) in R is a multiplicative group under the same multiplication as R.

$$
\begin{aligned}
& \text { Let } U(R)=\{x \in R: x \text { is a unit }\} \\
& \text { Since } 1 \cdot 1=1,1 \in U(R) \\
& \text { Suppose } x, y \in U(R) \text {, then } x y^{-1} y x^{-1}=1 \\
& \text { so } x y^{-1} \in U(R) \quad
\end{aligned}
$$

