- 1. Suppose x is an element of a finite group G. Show that
 - (a) x has finite order (denote it k),
 - (b) $x^n = e$ if and only if k divides n,
 - (c) $x^{|G|} = e$.
- (a) By the pigeonhole principle x^n , n=0,1,... are nSt all distinct, be $\exists m > n$ $x^m = x^n$ Then m-n>0 and $x^{m-n} = e$, so x has finite order.

(b) Let
$$S = \{n > 0 : x^n = e\}$$
. Then $k = |x| = \min S$.
If $k | n = j$ $n = kj$ so $x^n = (x^k)^j = e^j = e$.

Conversely suppose
$$x^n = e$$
. By the division algorithm
 $\exists ! q_1 r \quad n = k q + r \quad 0 \le r \le k$
Then $x^n = x^{kq+r} = (x^k)^q x^r = e^q x^r = x^r$, so $x^r = e^q x^r = x^r$, so $x^r = e^q x^r = x^r$, so $x^r = e^q x^r = x^r$.

(c) By Longrange's theorem $k = |x| = |\langle x \rangle|$ divides [6]. Thus, by (b) $x^{161} = e$. 2. Sketch the subgroup lattice for \mathbf{Z}_{12} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.

Divisors of 12:
$$1, 2, 3, 4, 6, 12$$

Subgroups: $Z_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
 $2Z_{12} = \{0, 2, 4, 6, 8, 10\}$
 $3Z_{12} = \{0, 3, 6, 9\}$
 $4Z_{12} = \{0, 3, 6, 9\}$
 $4Z_{12} = \{0, 4, 8\}$
 $6Z_{12} = \{0, 6\}$
 $12Z_{12} = \{0, 6\}$
 $2Z_{12} = \{0, 6\}$

- 3. Define a function from the integers to the multiplicative group of nonzero complex numbers $\varphi : \mathbf{Z} \to \mathbf{C}^*$ by $\varphi(k) = e^{2k\pi i/5}$.
 - (a) Prove that φ is a group homomorphism.
 - (b) What subgroup of **Z** is the kernel of φ ?
 - (c) Sketch the image of φ .
 - (d) What does the first isomorphism theorem tell you about fifth roots of unity?

(9)
$$\varphi(j+k) = e^{2(j+k)\pi i/5} = e^{2j\pi i/5 + 2k\pi i/5}$$

= $e^{2j\pi i/5} \cdot e^{2k\pi i/5} = \varphi(j) \cdot \varphi(k)$

(b)
$$k \in \ker \phi \in \phi(k) = 1 \in e^{2k\pi i/s} = 1$$

(b) $k \in \ker \phi \in \phi(k) = 1 \in e^{2k\pi i/s} = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi \in e^{2k\pi i/s} = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi \in e^{2k\pi i/s} = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi \in e^{2k\pi i/s} = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi \in e^{2k\pi i/s} = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $2k\pi/s = 2n\pi i/s = 2n\pi i/s = 1$
(c) $3n \in \mathbb{Z}$ $3n \in \mathbb{Z}$

(d)
$$\underline{\mathbb{Z}} \cong \operatorname{image}(\varphi) :: \frac{\overline{\mathbb{Z}}}{5\overline{\mathbb{Z}}} \cong H :: H \cong \mathbb{Z}_{5}$$

ker φ

4. Suppose an element x of the dihedral group D_n is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x = r_3 f_2 r_1 r_2 f_1$ with j = 3 and k = 2] Under what conditions on j and k is x a rotation? A reflection? Explain.

If k is even x is orientation preserving (a votation). If k is odd x is orientation reversing (a flip). 5. Let $\alpha = (1, 2, 5, 4)(2, 6, 3)(5, 6, 3, 2, 1)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What is the order of α ? Simplify α^{61} .

$$\begin{aligned} & = (1, 4) (3, 6, 5) & \text{Parity odd + area} = \text{odd} \\ & \text{By Purifying a dd + area} = 0 \\ & \text{By$$

6. Prove that the set A_n of all even permutations in the symmetric group S_n is a normal subgroup. What can you say about the quotient group S_n/A_n ? Give a concrete example of a subgroup of S_3 that is not normal. Explain.

An = ker
$$\varphi$$
, where $\varphi: S_n \rightarrow \mathbb{Z}_2$ is the homomorphism
given by $\varphi(\alpha) = \begin{cases} 0 & \text{if } \alpha \text{ is each} \\ 1 & \text{if } \alpha \text{ is ord} \end{cases}$
 $\therefore A_n \triangleleft S_n \because$
Alt: Since $|A_n| = |S_n \setminus A_n| = \frac{n!}{2}$,
The only option for a nontrivial coset
(right or left) of A_n is $S_n \setminus A_h \subset$
Since there are 2 cosets of A_n , $\frac{S_n}{A_n} \cong \mathbb{Z}_2$

Also: Since pis onto, 1st iso. the says I

Let
$$H = \{2, (1, 2)\} < S_3$$

Then $(1,3)H = \{(1,3), (1,2,3)\}$
 $H(1,3) = \{(1,3), (1,3,2)\}$
are not equal so $H \neq S_3$

7. How many group homomorphisms from \mathbf{Z}_{12} to $\mathbf{Z}_3 \oplus \mathbf{Z}_4$ are there? How many of them are isomorphisms? If φ is such an isomorphism with $\varphi(2) = [1,3]$, what is $\varphi(1)$?

A how
$$\varphi: \mathbb{Z}_{12} \to \mathbb{Z}_3 \oplus \mathbb{Z}_4$$
 is imaginally determined
by $\varphi(1)$. In \mathbb{Z}_{12} 1 has order 12, but by
by Lagrange's theorem any element of $\mathbb{Z}_3 \oplus \mathbb{Z}_4$
has order that divides $|\mathbb{Z}_3 \oplus \mathbb{Z}_4| = 12$, so
the choice of $\varphi(1)$ is free.
 \therefore there are 12 homomorphisms $\varphi: \mathbb{Z}_{12} \to \mathbb{Z}_3 \oplus \mathbb{Z}_4$
For φ to be an isomorphism, $\varphi(1)$ must be
a generator of $\mathbb{Z}_3 \oplus \mathbb{Z}_4$, so the componente
of $\varphi(1)$ must be generators of \mathbb{Z}_3 and \mathbb{Z}_4
choices: $\mathbb{Z}_3: 1, 2$ $\mathbb{Z}_4: 1, 3$ Total: 2:2=4
if $\varphi(2): [1,3]$, then since $[1,3]$ generates
 $\mathbb{Z}_3 \oplus \mathbb{Z}_4$ and 2 does not generate \mathbb{Z}_{12}

op cannot be an isomorphism.

8. Suppose R is a commutative ring with unity. Show that the set of all units (elements that have a multiplicative identity) in R is a multiplicative group under the same multiplication as R.

Let
$$U(R) = \{ x \in R : x \text{ is a unit} \}$$

Since $1 \cdot 1 = 1$, $1 \in U(R)$
Suppose $x, y \in U(R)$, then $xy^{-1}yx^{-1} = 1$
So $xy^{-1} \in U(R)$ $\stackrel{!}{\leftarrow}$