1. Let $\alpha = (3, 4, 1)(5, 2, 1, 3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{2019} .

$$\begin{aligned} \alpha' = (14)(235) \\ \text{Ruffini's theorem =>} & [\alpha] = low (1(1,4)], 1(235)) \\ = lew (2,3) = 6 \\ \\ \text{Pi = Panity ((1,4)) = odd} \\ \\ \text{Pi = Panity ((235)) = even} \\ \\ \text{Paity (\alpha') = p_1 + p_2 = odd + even = odd} \\ \\ \alpha'^{2019} = (14)^{2019} (235)^{2019} \\ \\ \text{disjone systemate !} \\ \\ 2019 = \begin{cases} 1 & \text{mod } 2 \\ 0 & \text{mod } 3 \end{cases} \quad \therefore \quad \Box^{2019} = (14) \end{aligned}$$

2. Prove that any group of prime order is cyclic.

Suppose
$$|G| = p - prime$$
.
Let $x \in G$, $x \neq e$.
By Legrange's theorem,
 $|(x>)|$ divides $|G| = p$.
 $\therefore |(x>)| = 1$ or p
But since $x \neq e$ $|(x>)| = p$
 $\therefore (x>) = G$ \therefore

3. Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n) = k$. Define a group homomorphism $\varphi \colon \mathbf{Z} \to \mathbf{Z}_m \oplus \mathbf{Z}_n$ by $\varphi(i) = [i \mod m, i \mod n]$. Prove that $\ker \varphi = k\mathbf{Z}$. What does the first isomorphism theorem tell you about the image of φ ? What can you say about $\mathbf{Z}_m \oplus \mathbf{Z}_n$ if $\operatorname{gcd}(m, n) = 1$?

4. Let F be a field. Show that the set of all polynomials in F[x] with zero constant term is a maximal ideal. What is the quotient ring?

Let
$$I = \{p \in F[x] : p(x) = a_0 + a_1 x + \dots + a_n x^n, w(H, a_0 = 0\}$$

 $(p(x) = a_1 x + \dots + a_n x^n)$
 $(p(x) = x(a_1 + \dots + a_n x^{n-1})$
 $\Rightarrow I = x F[x] (= \langle x \rangle)$
 \downarrow
 $= \{p \in F[x] : p(0) = 0\}$
Define $\varepsilon : F[x] \Rightarrow F$ by $\varepsilon(p) = p(\circ)$
 $\varepsilon : s = ring hom: \varepsilon(p+q) = (p+q)(s) = p(\circ) + q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = p(\circ) \cdot q(o)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = (p \cdot q)(s)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s) = (p \cdot q)(s)$
 $\varepsilon(p \cdot q) = (p \cdot q)(s)$
 $\varepsilon($

Direct proof t.0=0 So
$$0 \in I$$

If $p_1 q \in I$, $p = xp'$, $q = xq'$ du
Some $p' R q'$
 $\sum p - q = xp' - xq' = x(p' - q') \in I$
 $\therefore I$ is c subgroup of $F[X]$. If $p \in I$, $q \in F(X]$
 $p = xp'$ for some p' so $pq = xp'q \in I$
 $\therefore I$ is an ideal
Suppose J is an ideal of $F[X]$, $I \subseteq J$.
Let $p \in J \setminus I$, $p(x) = a_0 + a_1 x + \dots + a_n x^n$
Since $p \notin I$, $a_0 \notin O$
 $a_0 = p(x) - a_1 x - \dots - a_n x^n \in J$
 $\in J$ $\in I \subseteq J$
Since a_0 is a month, $J = F[x]$ \subseteq
Given a const. $a \leftarrow a + I$
 $a_0 + s_1 x + \dots + s_n x^n + T$
 $= a_0 + I$
 \therefore We have $c \vdash 1$ corresp. between $F[x] \notin F$

(ensy to show it's an iso.)

$$S_{f} = \frac{2008 \quad \text{Find } \# G}{A = \{(i, j) \in \mathbb{Z} \oplus \mathbb{Z} : i \text{ is even}\}}$$
(i) $(0,0] \in A$
(ii) if $[x,y] \in [u,v] \in A$, then $x = 2x'$, $u = 2u'$
for some x',u' .
Then $[x,y] - [u,v] = [x-u, y-v] = [2x'-2u', y-v]$
 $= [2(x'-u'), y-v] \in A$
 $\therefore A$ is a subgroup of $\mathbb{Z} \oplus \mathbb{Z}$.
(iii) Given $(x,y] \in A$, $[u,v] \in \mathbb{Z} \oplus \mathbb{Z}$
 $x - 2x'$ for some x'
 $[x,y][u,v] = [xu, yv] = [2x'u, yv] \in A$
 $\therefore A$ is an ideal.
Claim A is maximal. Suppore $J \in \mathbb{Z} \oplus \mathbb{Z}$ is
an ideal, $A \subseteq J$.
Let $[u,v] \in J \setminus A$. Since $[u,v] \notin A$, u is odd
So $u = 2u' + 1$ some u'
 $[u,v] = [2u' + 1, v] = [2u',v] + [1,v]$
 $[i,1] \in [1,1] - [1,v] + [1,v] = [i,1] - [i,v] + [u,v] - [2u',v]$
 $\therefore [1,1] \in J \therefore J = \mathbb{Z} \oplus \mathbb{Z}$

Strick proof: define
$$\varphi: \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}_2 \oplus \mathbb{Z}$$

ty $\varphi([i,j]) = [i \mod 2, 0]$
(easy to show φ is a hom)
let $\varphi = \{[i,j]: \varphi[i,j] = [o \mod 2, 0]\}$
 $= \{[i,j]: i \text{ is even } \} = A$
 \therefore let φ is an ideal.
 $|S= i \text{ iso thm} : \qquad \mathbb{Z} \oplus \mathbb{Z} \cong \text{ image } \varphi = \mathbb{Z}_2 \oplus \frac{1}{2} \circ \overline{j} \cong \mathbb{Z}_2$
Since \mathbb{Z}_2 is a field, A is maximal.

Sp 2009 Final #5 A Finite integral domain is a field. Suppose R is a finite integral bomain. Pf 1 het a E R, q ≠0. By the pigeonhole principle { 0, a, a², ... } count be all distinct. $\therefore \exists i < j$ $a^i = a^j \Rightarrow a^i = a^i a^{j-i}$ a^{j-i}=1 If axeay and a #0 $a \cdot a^{\int -c - i} = 1$ then X=y Pf: ax=ay => ax-ay=0 : a is a unit : Risadich :: ⇒ ~(x-y)=0 Since Risa domain and a to x-y=0 " Pf2 Let a E R, a to

Define a function
$$f: R \rightarrow R$$
 by $f(x) = Qx$
Then f is $[-1:$ If $f(x) = f(y)$, $g(x = f(y))$ (domain)
Since R is finite, f is onto.
 \therefore $\exists a' \in R$ $f(a') = 1$ \therefore Q is a unit
 \therefore R is a field

8
$$A = \{ p \in \mathbb{Z}_{m} [x] : p(0) = 0 \}$$

Let $p(x) = a_{0} + a_{1} \times + \dots + a_{n} x^{n}$
Then $p(0) = a_{0}$
5 $p(0) = 0 \iff p(x) = a_{1} \times + \dots + a_{n} x^{n}$
 $= x (a_{1} + \dots + a_{n} x^{n-1})$
 $\iff p(x) \in x \mathbb{Z}_{m} [x] = \langle x \rangle$

Define
$$\Sigma: \mathbb{Z}_{m}[x] \to \mathbb{Z}_{m}$$
 by $\Sigma(p) = p(0)$
then Σ is a hon (easy), here $\Sigma = A$,
 Σ is clearly onto.
 $[S^{\pm}]$ iso thm: $\frac{\mathbb{Z}_{m}[x]}{A} \stackrel{\sim}{=} \mathbb{Z}_{m}$

A is prime (so Zmisc domain) A is man (so Zmisc field) A is man (so Zmisc field)