1. Let $\alpha=(3,4,1)(5,2,1,3)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What are the order and the parity of α ? Explain. Simplify α^{2019}.

$$
\alpha=(14)(235)
$$

Ruffinis theorem $\Rightarrow|\alpha|=\operatorname{lom}(|(1,4)|,|(235)|)$

$$
=\operatorname{lem}(2,3)=6
$$

$$
\begin{aligned}
& p_{1}=\text { parity }((1,4))=\text { odd } \\
& p_{2}=\text { parity }((235))=\text { even }
\end{aligned}
$$

$$
\text { parity }(\alpha)=p_{1}+p_{2}=\text { odd }+ \text { even }=\text { odd }
$$

$$
\alpha^{2019}=(14)^{2019}(235)^{2019}
$$

C disjoint cycle ermmote?

$$
2019=\left\{\begin{array}{ll}
1 \bmod 2 \\
0 \mathrm{mod} 3
\end{array} \quad \therefore \alpha^{2019}=(14)\right.
$$

2. Prove that any group of prime order is cyclic.

Suppose $|G|=P$ - prime.
let $x \in G, x \neq e$.
By Lagrange's theorem,
$|\langle x\rangle|$ divides $|G|=P$.

$$
\therefore|\langle x\rangle|=1 \text { or } p
$$

But since $x \neq e \quad|\langle x\rangle|=p$

$$
\therefore \quad\langle x\rangle=G
$$

3．Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n)=k$ ．Define a group homomorphism $\varphi: \mathbf{Z} \rightarrow \mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ by $\varphi(i)=[i \bmod m, i \bmod n]$ ．Prove that $\operatorname{ker} \varphi=k \mathbf{Z}$ ．What does the first isomorphism theorem tell you about the image of φ ？What can you say about $\mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ if $\operatorname{gcd}(m, n)=1$ ？
let $\pi_{m}: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$
$\pi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ be the natural projection．
Universal property of product：

$$
\left.\begin{array}{rl}
\operatorname{ker} \phi & =\left\{i: \phi(i)=0_{2_{m} \oplus z_{n}}\right\} \\
& =\{i:[i \operatorname{modm}, i \operatorname{modn}]=[0,0]\} \\
& =\{i: \quad i=0 \operatorname{modm} \& i \equiv 0 \bmod n\} \\
& =\{i: \quad m|i \& n| i\} \quad \text { (all commontiples } \\
\text { mit } \\
\text { of } m, n
\end{array}\right)
$$

1红isomaphism tam：$\frac{\mathbb{Z}}{\operatorname{ker} \phi} \cong \operatorname{image}(\varphi)$

$$
\therefore \operatorname{image}(\varphi) \cong \frac{\pi}{k \pi}=\pi_{k}
$$

If $\operatorname{gcd}(m, n)=1, k=\operatorname{lcm}(m, n)=m n$

$$
\begin{aligned}
& \underbrace{\operatorname{image}(\phi)}_{k=m n} \subseteq \underbrace{\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}}_{m n} \\
& \therefore \quad \text { image }(\phi)=\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \quad \text { (} \phi \text { is onto) } \\
& \therefore \mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}
\end{aligned}
$$

4. Let F be a field. Show that the set of all polynomials in $F[x]$ with zero constant term is a maximal ideal. What is the quotient ring?
let $I=\left\{p \in F[x]: p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right.$, with $\left.a_{0}=0\right\}$

$$
\begin{aligned}
& \left(p(x)=a_{1} x+\ldots+a_{n} x^{n}\right) \\
& \left(p(x)=x\left(a_{1}+\ldots+a_{n} x^{n-1}\right)\right. \\
& \Rightarrow I=x F[x] \quad(=\langle x\rangle)
\end{aligned}
$$

$$
a_{0}=p(0)
$$

\downarrow

$$
=\{p \in F[x]: p(0)=0\}
$$

Define $\varepsilon: F(x) \rightarrow F$ by $\varepsilon(p)=p(0)$
ε is a ring home: $\varepsilon(p+q)=(p+q)(0)=p(0)+q(0)$

$$
\begin{aligned}
\varepsilon(p \cdot q)=(p \cdot q)(0) & =p(0) \cdot q(0) \\
& =\varepsilon(p) \cdot \varepsilon(q)
\end{aligned}
$$

$\operatorname{ker} \varepsilon=I$, Also ε is onto:
Given $a \in F, \quad \varepsilon(a)=a(0)=a \quad \cup$ Toast. polynomial
(St isomorphism theorem: $\frac{F[x]}{\text { Fer } \varepsilon} \cong \operatorname{image}(\varepsilon)=F$
Since F is a file, fere is a max -ideal. "

Direct proof $t \cdot 0=0$ so $0 \in I$
If $p, q \in I, p=x p^{\prime}, q=x q^{\prime}$ for
some $p^{\prime} \& q^{\prime}$
S $p-q=x p^{\prime}-x q^{\prime}=x\left(p^{\prime}-q^{\prime}\right) \in I$
$\therefore I$ is a subgroup of $F[x]$. If $p \in I$, $q \in F[x]$
$p=x p{ }^{\prime}$ for some p^{\prime} so $p q=x p^{\prime} q \in I$
$\therefore I$ is an ideal

Suppose J is an ideal of $F[x], I C_{\neq} J$.
Let $p \in \mathcal{J} \backslash I, p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$
since $p \notin I, a_{0} \neq 0$

$$
a_{0}=\frac{p(x)}{\epsilon J}-\underbrace{a_{1} x-\ldots-a_{n} x^{n}}_{\in I \subseteq J} \in J
$$

Since a_{0} is a unit, $J=F[x]$

Given a const. $a \longleftrightarrow a+I$

$$
\begin{aligned}
& a_{0}+\underbrace{a_{1} x+\ldots+a_{n} x^{n}}_{\epsilon I}+2 \\
& =a_{0}+I
\end{aligned}
$$

\therefore We have a $1-1$ corresp. between $\frac{F[x]}{I}$ \& F
(easy to show it's an iso.)

Sp 2008 Final \#6
$A=\{[i, j] \in \mathbb{Z} \oplus \mathbb{Z}: i$ is even $\}$
(i) $[0,0] \in A$
(ii) if $[x, y] \&[u, v] \in A$, then $x=2 x^{\prime}, u=2 u^{\prime}$ for some x^{\prime}, u^{\prime}.
Then $[x, y]-[u, v]=[x-u, y-v]=\left[2 x^{\prime}-2 u^{\prime}, y-v\right]$

$$
=\left[2\left(x^{\prime}-n^{\prime}\right), y-v\right] \in A
$$

$\therefore A$ is a sub group of $\mathbb{Z} \mathbb{Z}$.
(iii) Given $[x, y] \in A,[u, v] \in \mathbb{Z} \oplus \mathbb{Z}$
$x=2 x^{\prime}$ for some x^{\prime}

$$
[x, y][u, v]=[x u, y v]=\left[2 x^{\prime} u, y v\right] \in A
$$

$\therefore \quad A$ is an ideal.
Claim A is maximal. Suppose $J \subseteq K \oplus Z$ is an ideal, $A \neq J$.
Let $[u, v] \in J \backslash A$. Since $[u, v] \notin A, u$ is odd So $u=2 u^{\prime}+1$ some u^{\prime}

$$
\begin{gathered}
{[u, v]=\left[2 u^{\prime}+1, v\right]=\left[2 u^{\prime}, v\right]+[1, v]} \\
{[1,1]=[1,1]-[1, v]+[1, v]=\underbrace{[1,1]-[1, v]}_{[0,1-v]}+\underbrace{[u, v]}_{\in J}-\underbrace{\left[2 u^{\prime}, v\right]}_{\in A \subseteq J}} \\
\therefore[1,1] \in J \therefore J \subseteq J
\end{gathered}
$$

Slick proof: define $\phi: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}$
By $\phi([i, j])=[i \bmod 2,0]$
(easy to show φ is a how)

$$
\begin{aligned}
\operatorname{ker} \phi & =\{[i, j]: \phi[i, j]=\{0 \bmod 2,0]\} \\
& =\{[i, j]: i \text { is even }\}=A
\end{aligned}
$$

\therefore leer ϕ is an ideal.
In iso the: $\quad \frac{\mathbb{Z} \oplus \mathbb{Z}}{A} \cong$ image $\phi=\mathbb{Z}_{2} \oplus\{0\} \cong \mathbb{Z}_{2}$
Since \mathbb{Z}_{2} is a field, A is maximal.
(8) prove $x^{p}+x+1$ and $2 x+1$ determine the same function $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$

By little Fermat's theorem $x^{P} \equiv x \bmod p$
So $x^{p}+x+1=x+x+1=2 x+1 \quad \ddot{ }$

Sp 2009 Final \#5 A Finite integral domain is a field.
Suppose R is a finite integral bomain. Pf I Let $a \in R, a \neq 0$. By the pigeonhole principle $\left\{0, a, a^{2}, \ldots\right\}$ coun Ω be all distinct.

$$
\therefore \exists i<j \quad a^{i}=a^{j} \Rightarrow a^{i}=\not q^{i} a^{j-i}
$$

If $a x=a y$ and $a \neq 0$

$$
a^{j-i}=1
$$

then $x=y$

$$
a \cdot a^{j-i-1}=1
$$

Pf: $\quad a x=a y \Rightarrow a x-a y=0$

$$
\Rightarrow a(x-y)=0
$$

$\therefore a$ is a unit

$$
\therefore R \text { isadicld } \because
$$

Since R is a domain

$$
\text { and a } \neq 0 \quad x-y=0 "
$$

pf 2 Let $a \in R, a \neq 0$
Define a function $f: R \rightarrow R$ by $f(x)=a x$
Then f is $1-1$: if $f(x)=f(y), \quad d x=d y \quad \ddot{ }$ (domain)
Since R is finite, f is onto.

$$
\therefore \exists a^{\prime} \in R \quad \begin{aligned}
& a a^{\prime}
\end{aligned} \quad \therefore \quad a \text { is a unit }
$$

$8 \quad A=\left\{p \in \mathbb{Z}_{m}[x]: p(0)=0\right\}$
Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
Then $p(0)=a_{0}$
S

$$
\begin{aligned}
& p(0)=0 \Leftrightarrow p(x)=a_{1} x+\ldots+a_{n} x^{n} \\
& =x\left(a_{1}+\ldots+a_{n} x^{n-1}\right) \\
& \Leftrightarrow p(x) \in x \mathbb{Z}_{m}[x]=\langle x\rangle \quad \dot{ }
\end{aligned}
$$

Define $\varepsilon: \mathbb{Z}_{m}[x] \rightarrow \mathbb{Z}_{m}$ by $\varepsilon(p)=p(0)$ then ε is a him (easy), beer $\varepsilon=A$, ε is clearly onto.
(S<compat>ᄑ iso the: $\frac{\mathbb{Z}_{m}[x]}{A} \cong \mathbb{Z}_{m}$
A is prime $\Leftrightarrow m$ is prime (so \mathbb{Z}_{m} is a domain) A is max $\Leftrightarrow m$ is prime $\left(s \mathbb{Z}_{m}\right.$ is a field)

If m is prime, A is both prime \& max. If m is $n \Omega$ prime, A is neither prime nor max.

