- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m, n) divides any common multiple of m and n.

2. Sketch the subgroup lattice for \mathbf{Z}_{20} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.

$$D: visors of 20: 1, 2, 4, 5, 10, 20$$

$$<1> = \mathbb{Z}_{20} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, (6, 17, 18, 19]\}$$

$$<2> = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18\} \leq \mathbb{Z}_{10} \quad Possible \\ (4) = \{0, 4, 8, 12, 16\} \quad (\cong \mathbb{Z}_{5}) \quad qenerators \\ (5) = \{0, 5, 10, 15\} \quad (\cong \mathbb{Z}_{4}) \quad (o - prime) \\ (10) = \{0, 10\} \leq \mathbb{Z}_{2} \\ (20) = \langle 0 \rangle = \{0, 5\}$$

Ľ

3. Suppose an element x of the dihedral group D_n is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x = r_3 f_2 r_1 r_2 f_1$ with j = 3 and k = 2] Under what conditions on j and k is x a rotation? A reflection? Explain.

Each element of
$$D_n$$
 is an orthogonal linear
transfirmation of the plane, so can be
represented by a matrix (for example in
Cantosian coordinates E, f)
For rotations det =1, div reflections det=-1
In the example : $x = r_3 f_2 r_1 r_2 f_1$
bet $(x_7) = det(r_3 f_2 r_1 r_2 f_1)$
 $= let(r_3) det(f_2) let(r_1) det(r_2) let(f_1)$
 $(det : D_n \rightarrow \{r_1 - i\} is a hom)$
 $= i(-1)i(-i) = i$
In general:
If he is odd det $ix_1 = -i$, so x is a reflection
If he is even $det(x) = i$, so x is a rotation
 i

- 4. Suppose G is a finite group and $x \in G$. Prove:
 - (a) x has finite order.
 - (b) $x^n = e$ if and only if the order of x divides n.

a) By Pigeonhole Principle
$$\{x^{j}: j \in \mathbb{Z}\}$$

cannot be all distinct, so twe some $j \neq k = x^{k} = x^{j}$
 $WLOC = arrive \int Cke$, then $x^{i} = x^{k} = x^{k-j+j}$
 $\therefore x^{ke-j} = e \quad (k-j>0) \qquad = x^{k-j}x^{j}$
 $\therefore x^{ke-j} = e \quad (k-j>0) \qquad = x^{k-j}x^{j}$
 $\therefore x^{hos} finite order$
In fact the order of x is the minimum
of $\{j>0: x^{j} = e\} \neq \phi \quad (\min e xist hy the well-ordering)$
Let $m = |x| = \min\{j>0: x^{j} = e\} \qquad principle$
b) "C=" (f m divides n, $\exists q \quad n = mq$, so
 $x^{n} = x^{mq} = (x^{m})^{q} = e^{q} = e$
 $\stackrel{\circ}{\longrightarrow} Div. alg.: \exists !q, r \in \mathbb{Z} \quad s.t. \quad n = mq + r$
 $x^{r} = x^{n-mq} = x^{n} \cdot (x^{m})^{-q} = e \cdot e^{-q} = e$
Since $r < m$ (minimal post power), $r = 0$ "

5. Let \mathbf{R}^+ denote the multiplicative group of positive real numbers. Suppose $a \in \mathbf{R}, a > 1$. Prove that the exponential map $x \mapsto a^x$ is an isomorphism from \mathbf{R} to \mathbf{R}^+ .

Let
$$x, y \in \mathbb{R}$$
 $x+y \mapsto a^{x+y} = a^x \cdot a^y$
 \therefore when have a hom.
 $(\text{Let } \varphi(x) = a^x, \varphi(x+y) = a^{x+y} = a^x a^y = \varphi(x) \varphi(y))$
 $\underbrace{\text{Compositional inverse}}_{(a^{\log_a y} = y)} \xrightarrow{\log_a a^x = x)}$

Alt: 1-1: If
$$x \in ker$$
, i.e.
 $a^{x} = 1$, then $x = 0$ "
onto: If $y = a^{x}$ lng = $x \ln a$
 $x = \ln g$ (= $\log_{a} g$)
 $\ln a$

ڗ