
Midterm 1 / 2019.2.27 / MAT 4233.001 / Modern Abstract Algebra

1. Suppose m and n are natural numbers. Prove that

(a) any common divisor of m and n divides gcd(m,n).

(b) lcm(m,n) divides any common multiple of m and n.
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2. Sketch the subgroup lattice for Z20. For each subgroup, list all the elements and indicate
all possible generators of the subgroup.
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3. Suppose an element x of the dihedral group Dn is a composition (in an arbitrary order)
of j rotations and k reflections (flips). [Example: x = r3f2r1r2f1 with j = 3 and k = 2]
Under what conditions on j and k is x a rotation? A reflection? Explain.
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4. Suppose G is a finite group and x ∈ G. Prove:

(a) x has finite order.

(b) xn = e if and only if the order of x divides n.
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5. Let R+ denote the multiplicative group of positive real numbers. Suppose a ∈ R, a > 1.
Prove that the exponential map x �→ ax is an isomorphism from R to R+.
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