1. Suppose m and n are natural numbers. Prove that
(a) any common divisor of m and n divides $\operatorname{gcd}(m, n)$.
(b) $\operatorname{lcm}(m, n)$ divides any common multiple of m and n.
a) Suppose d divides m \& n

Bèzout: $\exists s, t \in \pi \quad \operatorname{ged}(m, n)=s m+t n$
Since d divides both sm \& t_{n}, d diver $\operatorname{ged}(m, n) \quad \ddot{ }$
b) Suppose n \& m divide s

Div, alg.: $f!q, r$ sit. $\quad s=q \operatorname{lcm}(m, n)+r$ and $0 \leq r<\operatorname{lcm}(m, n)$

$$
r=s-q \operatorname{lcm}(m, n)
$$

Since m, n divide both S and $-q \operatorname{lcm}(m, n)$, m, n divide r
Since $r<\operatorname{llam}(m, n), r=0 \quad \because$
2. Sketch the subgroup lattice for \mathbf{Z}_{20}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.
Divisors of 20: $1,2,4,5,10,20$

$$
\begin{aligned}
& \langle 1\rangle=\mathbb{Z}_{20}=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, \\
& 15,16,17,18,19\} \\
& \left.\langle 2\rangle=\{0, \underline{2}, 4, \underline{6}, 8,10,12, \underline{1}, 16, \underline{8}\} \cong \mathbb{Z}_{10} \quad \text { Possible }\right\} \\
& \langle 4\rangle=\{0,4,8,12,16\}\left(\cong \pi_{5}\right) \\
& \langle 5\rangle=\{0,5,10,15\} \quad\left(\cong \mathbb{Z}_{4}\right) \\
& \text { (w-prime) } \\
& \text { to } 20 \text {) } \\
& \langle 10\rangle=\{0,10\} \cong \pi_{2} \\
& \langle 20\rangle=\langle 0\rangle=\{0\}
\end{aligned}
$$

3. Suppose an element x of the dihedral group D_{n} is a composition (in an arbitrary order) of j rotations and k reflections (flips). [Example: $x=r_{3} f_{2} r_{1} r_{2} f_{1}$ with $j=3$ and $k=2$] Under what conditions on j and k is x a rotation? A reflection? Explain.

Each element of D_{n} is an orthogonal linear transformation of the plane, so cam be represented by a matrix (for example in Cantesion coordinates $\hat{c}, \hat{\jmath}$)
For rotations det $=1$, for reflections $\operatorname{det}=-1$
In the example: $x=r_{3} f_{2} r_{1} r_{2} f_{1}$
$\operatorname{bet}(x)=\operatorname{det}\left(r_{3} f_{2} r_{1} r_{2} f_{1}\right)$

$$
\begin{aligned}
& =\operatorname{det}\left(r_{3}\right) \operatorname{det}\left(f_{2}\right) \operatorname{det}\left(r_{1}\right) \operatorname{det}\left(r_{2}\right) \operatorname{det}\left(f_{1}\right) \\
& \quad\left(\operatorname{det}: D_{n} \rightarrow\{1,-1\} \text { is a hos }\right) \\
& =1(-1) 11(-1)=1
\end{aligned}
$$

In general:
If k is odd $\operatorname{det}(x)=-1$, so x is a reflection If k is even $\operatorname{det}(x)=1$, so x is a rotation
(a) x has finite order.
(b) $x^{n}=e$ if and only if the order of x divides n.
a) By Pigeonhole principle $\left\{x^{j}: j \in Z\right\}$ cannot be all distinct, so for some $j \neq k \quad x^{k}=x^{j}$

WLOG assume $j<k$, then $x^{i}=x^{k}=x^{k-j+j}$

$$
\therefore \quad x^{k-j}=e \quad(k-j>0)
$$

$$
=x^{k-j} x^{j}
$$

$\therefore x$ has finite order
In fact the order of x is the minimum of $\left\{j>0: x^{j}=e\right\} \neq \phi \quad \begin{aligned} & \text { (min } e x i s t \text { by the } \\ & \text { well-ordering }\end{aligned}$ principle)
Let $m=|x|=\min \left\{j>0: x^{j}=e\right\}$
b) "e" if m divides n, $\exists q \quad n=m q$, do

$$
x^{n}=x^{m q}=\left(x^{m}\right)^{q}=e^{q}=e
$$

" \Rightarrow Div. alg.: $7!q, r \in \mathbb{Z}$ s.t. $n=m q+r$ \& $0 \leq r<m$
Then $r=n-m q$.

$$
x^{r}=x^{n-m q}=x^{n} \cdot\left(x^{m}\right)^{-q}=e \cdot e^{-q}=e
$$

Since $r<m$ (minimal pos.power),$r=0$
5. Let \mathbf{R}^{+}denote the multiplicative group of positive real numbers. Suppose $a \in \mathbf{R}, a>1$. Prove that the exponential map $x \mapsto a^{x}$ is an isomorphism from \mathbf{R} to \mathbf{R}^{+}.

Let $x, y \in \mathbb{R} \quad x+y \mapsto a^{x+y}=a^{x} \cdot a^{y}$
\therefore We have a how.
$\left(\right.$ Let $\left.\varphi(x)=a^{x}, \varphi(x+y)=a^{x+y}=a^{x} a^{y}=\varphi(x) \varphi(y)\right)$
Compositional inverse: $\quad y \mapsto \log _{a} y$

$$
\left(a^{\log _{a} y}=y \quad \log _{a} a^{x}=x\right)
$$

Alt: 1-1: If $x \in k e r$, ie.

$$
a^{x}=1 \text {, then } x=0
$$

Onto: if $y=a^{x} \quad \ln y=x \ln a$

$$
x=\frac{\ln y}{\ln a}\left(=\log _{a} y\right)
$$

