Final exam / 2019.5.9 / MAT 4233.001 / Modern Abstract Algebra

- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m, n) divides any common multiple of m and n.

2. Sketch the subgroup lattice for \mathbf{Z}_{28} . For each subgroup, list all the elements and indicate all possible generators of the subgroup.

3. Find a proper non-trivial normal subgroup of the symmetric group S_n . Find a subgroup of S_n that is not normal. Prove your assertions.

For
$$n \ge 3$$
 A_n is a nontrivial proper normal
 $subgroup of Sn$
 $A_n = ker \phi$, where $\phi : S_n \Rightarrow Z_2$ is the hom.
 $befined by \phi(even) = 0$, $\phi(odd) = 1$
 $\langle (1,2) \rangle = \{ \epsilon, (1,2) \}$ is not normal in S_3
 $(1,3)^{-1}(1,2)(1,3) = (1,3)(1,2)(1,3) = (2,3) \notin \langle (1,2) \rangle$

(

- 4. Suppose G is a finite group with m elements and $x \in G$. Prove:
 - (a) x has finite order.
 - (b) $x^n = e$ if and only if the order of x divides n.

(c)
$$x^{m} = c$$
.
a) By Pigeonhole Principle $\{x^{j}: j \in \mathbb{Z}\}$
cannot be all distinct, so the same $j \neq k$ $x^{k} = x^{j}$
 $who c arrive $j < k$, then $x^{j} = x^{k} = x^{k-j+j}$
 $\therefore x^{k-5} = e$ $(k-j>0)$ $= x^{k-j}x^{j}$
 $\therefore x^{k-5} = e$ $(k-j>0)$
 $\therefore x^{k-5} = e^{j}$ $(minexist hy the will ordering principle)$
b) " \in " if k divides $n, 3q$ $n=kq$, so $x^{n} = x^{kq} = (x^{k})^{q} = e^{q} = e$ \because
 $x^{n} = x^{kq} = (x^{k})^{q} = e^{q} = e$ \because
 $x^{n} = x^{kq} = (x^{k})^{-q} = e \cdot e^{-q} = e$ \because
Since $r < k$ (minimal post power), $r = 0$ \checkmark
c) $k = l < r>1$, so by happranges theorem $k \mid m$,
So by (b) $x^{m} = e$. $\because$$

5. Let R be the ring of continuous functions $\mathbf{R} \to \mathbf{R}$ with pointwise operations. Define $\varepsilon \colon R \to \mathbf{R}^2$ by $\varepsilon(f) = [f(0), f(1)]$. Prove that ε is a ring homomorphism. Is ε onto? Is ker ε a maximal ideal? Prime ideal?

$$\begin{split} & \epsilon(f+g) = [(f+g)(o), (f+g)(i)] = [f(o)+g(o), f(i)+g(i)] \\ &= [f(o), f(i)] + [g(o), g(i)] = \epsilon(f) + \epsilon(g) \text{ and dimilarly} \\ & + w whip liestion, so ϵ is a ring hom
Note: ϵ is the hom given by the universal property of product and $\epsilon_{o,1}$: $\epsilon_{o} (\prod_{k=0}^{R} 2^{k}) \epsilon_{i}$
 $& R \in (R^{2} \to R^{2}) \epsilon_{i}$
 $& R \in (f) = [f(o), f(i)] = [e,b], so \epsilon is onto.$
Let $g(x) = x$ and $h(x) = 1-x$
then $\epsilon(g) = [o,1]$ and $\epsilon(h) = [1,o]$
So mither g nor $h \notin kar \epsilon$, but
 $\epsilon(gh) = \epsilon(x-x^{2}) = [o,o] \epsilon kar \epsilon$
ker ϵ is not a prime rideal, so not uckinal either.
For example, ker $\epsilon \subset ker \epsilon_{o} \subset R$.
 $& \frac{Slick proof}{r}$: Ry 1st isomorphysin theorem
 $& \frac{R}{ker \epsilon} \cong image(\epsilon) = 1R^{2} \epsilon - not a integral dorman, so not a field wither.$$$

.7

6. Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n) = k$. Define a group homomorphism $\varphi \colon \mathbf{Z} \to \mathbf{Z}_m \oplus \mathbf{Z}_n$ by $\varphi(i) = [i \mod m, i \mod n]$. Prove that $\ker \varphi = k\mathbf{Z}$. What does the first isomorphism theorem tell you about the image of φ ? What can you say about $\mathbf{Z}_m \oplus \mathbf{Z}_n$ if $\operatorname{gcd}(m, n) = 1$?

Let
$$\pi_m : \mathbb{Z} \to \mathbb{Z}_m$$

 $\pi_k : \mathbb{Z} \to \mathbb{Z}_n$ be the natural projection.
Universal property of product: $\pi_n = \begin{bmatrix} z_n \oplus z_n \\ \mathbb{Z}_n \oplus \mathbb{Z}_n \end{bmatrix}$
 $\lim_{\mathbb{Z}_n} \oplus \mathbb{Z}_n \begin{bmatrix} z & n & 0 & 1 \\ \mathbb{Z}_n & \mathbb{Z}_n \end{bmatrix}$
 $= \begin{cases} i : (z & n & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$
 $= \begin{cases} i : (z & n & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $= \begin{cases} i : (z & n & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $= \begin{cases} i : (z & n & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $= \begin{cases} i : (z & n & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $= \begin{cases} i : (z & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\therefore \text{ image } (\Phi) \subseteq \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) \subseteq \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) \subseteq \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$
 $\therefore \text{ image } (\Phi) = \mathbb{Z}_n \oplus \mathbb{Z}_n$

7. Show that the set of all polynomials in $\mathbf{Z}[x]$ with even constant term is a maximal ideal of $\mathbf{Z}[x]$. What is the quotient ring?

Let $I = \{ p \in \mathbb{Z} \mid x \}$: const-term is even $\} =$ $= \{ p \in \mathbb{Z} \mid x \}$; $p(0) \equiv 0 \mod 2 \} = \langle 2, x \rangle$ (so an ideal) Suppose J is an ideal, $I \subseteq J$. Then $\exists p \in J \setminus I$, i.e. $p(x) = a_0 + a_1 x + \dots$ with $a_0 = 2k + 1$ for some k. Then $I = p(x) - 2k - x(a_1 + \dots) \in J$ $\therefore J = \mathbb{Z} [x]$ $\in J$ $\in I \subset J$ for I is maximal \Box

Slick proof with homs.:
Let
$$\Sigma: \mathbb{Z}[x] \to \mathbb{Z}$$
 be the evaluation hom. $\Sigma(p) = p(o)$
and $\pi: \mathbb{Z} \to \mathbb{Z}_2$ the projection hom. $\pi(n) = n \mod 2$
Let $\varphi: \mathbb{Z}[x] \to \mathbb{Z}_2$ be the composition $\varphi = \pi \circ \varepsilon$.

Then $I = \ker \phi$ Pf: pe ker $\phi \iff \phi(p) = p(0) \mod 2 = 0 \iff p \in I$ \Box

By the
$$|^{\frac{N}{2}}$$
 is a time. $\frac{\mathbb{Z}[x]}{\mathbb{I}} = \frac{\mathbb{Z}[x]}{\ker \varphi} \cong \operatorname{image}(\varphi) = \mathbb{Z}_2$
Since \mathbb{Z}_2 is a field, I is a maximal ideal of $\mathbb{Z}[x]$: