
Final exam / 2019.5.9 / MAT 4233.001 / Modern Abstract Algebra

1. Suppose m and n are natural numbers. Prove that

(a) any common divisor of m and n divides gcd(m,n).

(b) lcm(m,n) divides any common multiple of m and n.
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2. Sketch the subgroup lattice for Z28. For each subgroup, list all the elements and indicate
all possible generators of the subgroup.
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3. Find a proper non-trivial normal subgroup of the symmetric group Sn. Find a subgroup
of Sn that is not normal. Prove your assertions.
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4. Suppose G is a finite group with m elements and x ∈ G. Prove:

(a) x has finite order.

(b) xn = e if and only if the order of x divides n.

(c) xm = e.
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5. Let R be the ring of continuous functions R → R with pointwise operations. Define
ε : R→R2 by ε(f) = [f(0), f(1)]. Prove that ε is a ring homomorphism. Is ε onto? Is
ker ε a maximal ideal? Prime ideal?
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6. Suppose m,n, k ∈ N with lcm(m,n) = k. Define a group homomorphism ϕ : Z→Zm⊕Zn

by ϕ(i) = [imodm, imodn]. Prove that kerϕ = kZ. What does the first isomorphism
theorem tell you about the image of ϕ? What can you say about Zm⊕Zn if gcd(m,n) = 1?

THE UNIVERSITY OF TEXAS AT SAN ANTONIO



7. Show that the set of all polynomials in Z[x] with even constant term is a maximal ideal
of Z[x]. What is the quotient ring?
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