1. Suppose m and n are natural numbers. Prove that
(a) any common divisor of m and n divides $\operatorname{gcd}(m, n)$.
(b) $\operatorname{lcm}(m, n)$ divides any common multiple of m and n.
a) Suppose d divides m \& n Bè tout: $\exists s, t \in \pi \quad \operatorname{gcd}(m, n)=s m+t_{n}$

Since d divides both Sm \& t_{n}, d divider $\operatorname{god}(m, n) \quad \ddot{ }$
b) Suppose n \& m divide s Div. alg.: $f!q, r$ st. $\quad s=q \operatorname{lcm}(m, n)+r$ and $0 \leqslant r<\operatorname{lcm}(m, n)$

$$
r=s-q \operatorname{lcm}(m, n)
$$

Since m, n divide both s and $-q \operatorname{lcm}(m, n)$, m, n divide r
Since $r<(l)$ cen $(m, n), r$
2. Sketch the subgroup lattice for \mathbf{Z}_{28}. For each subgroup, list all the elements and indicate all possible generators of the subgroup.

Divisors of $28: 1,2,4,7,14,28$

$$
\begin{aligned}
& \langle 1\rangle=\mathbb{Z}_{28}=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, \\
& 15,16,17,18,19,20,21,22,23,24,25,26,273 \\
& \langle 2\rangle=\{0,2,4,6,8,10,12,14,16, \underline{18} . \\
& \text { Possible) } \\
& 20,22,24,263 \cong \mathbb{Z}_{14} \\
& \begin{array}{l}
\langle 4\rangle=\{0,4,8,12, \underline{16}, 20, \underline{24}\} \\
\langle 7\rangle=\{0, \geq, 14,2,\} \cong \mathbb{Z}_{4}
\end{array} \\
& \text { generators } \\
& \text { (w-prime) } \\
& \text { to } 28 \\
& \langle 14\rangle=\{0,14\} \cong \pi_{2} \\
& \langle 28\rangle=\langle 0\rangle=\{0\} \\
& \text { I Possible generators } \\
& \text { (smallest ged with } 28 \text {) }
\end{aligned}
$$

3. Find a proper nontrivial normal subgroup of the symmetric group S_{n}. Find a subgroup of S_{n} that is not normal. Prove your assertions.
For $n \geqslant 3 \quad A_{n}$ is a nontrivial proper normal subgroup of S_{n}
$A_{n}=$ her ϕ, where $\phi: S_{n} \rightarrow \mathbb{Z}_{2}$ is the nom. defined by $\phi($ even $)=0, \phi($ odd $)=1$
$\langle(1,2)\rangle=\{\varepsilon,(1,2)\}$ is $n \mathcal{A}$ normal in S_{3}

$$
(1,3)^{-1}(1,2)(1,3)=(1,3)(1,2)(1,3)=(2,3) \notin\langle(1,2)\rangle
$$

4. Suppose G is a finite group with m elements and $x \in G$. Prove:
(a) x has finite order.
(b) $x^{n}=e$ if and only if the order of x divides n.
(c) $x^{m}=e$.
a) By Pigeonhole principle $\left\{x^{j}: j \in \mathbb{Z}\right\}$ cannot be all distinct, so for some $\jmath \neq k \quad x^{k}=x^{j}$ WLOG assume $j<k$, then $x^{i}=x^{k}=x^{k-j+j}$

$$
\therefore \quad x^{k-j}=e \quad(k-j>0)
$$

$$
=x^{k-j} x^{j}
$$

$\therefore x$ has finite order
In fact the order of x is the minimum of $\left\{j>0: x^{j}=e\right\} \neq \phi \quad\left(\begin{array}{l}\text { min exist by the } \\ \text { well-ordering }\end{array}\right.$ well-ordering
Let $k=|x|=\min \left\{j>0: x^{j}=e\right\}$ principle)
b) "E" if k divides n, $\ddagger q \quad n=k q$, so

$$
x^{n}=x^{k q}=\left(x^{k}\right)^{q}=e^{q}=e
$$

\Rightarrow " Div. alg.: $\exists!q, r \in \mathbb{Z}$ s.t. $n=k q+r$ \& $0 \leqslant r<m$
Then $r=n-k q$.

$$
x^{r}=x^{n-k q}=x^{n} \cdot\left(x^{k}\right)^{-q}=e \cdot e^{-q}=e
$$

Since $r<k$ (minimal posipower), $r=0$
c) $k=(\langle x\rangle \mid$, so by Lagrange's theorem $k \mid m$,

So by (b) $x^{m}=e \cdot \dot{c}^{\prime}$
5. Let R be the ring of continuous functions $\mathbf{R} \rightarrow \mathbf{R}$ with pointwise operations. Define $\varepsilon: R \rightarrow \mathbf{R}^{2}$ by $\varepsilon(f)=[f(0), f(1)]$. Prove that ε is a ring homomorphism. Is ε onto? Is $\operatorname{ker} \varepsilon$ a maximal ideal? Prime ideal?

$$
\begin{aligned}
& \varepsilon(f+g)=[(f+g)(0),(f+g)(1)]=[f(0)+g(0), f(1)+g(1)] \\
& =[f(0), f(1)]+[g(0), g(1)]=\varepsilon(f)+\varepsilon(g) \text { and similarly }
\end{aligned}
$$ for unuthiplication, so ε is a ring how

Note: ε is the him. given by the universal property of product and $\varepsilon_{0,1}$:

$$
\begin{gathered}
\varepsilon_{0}\left(\underset{\sim}{\mathbb{R}} \downarrow \varepsilon_{1}\right. \\
\mathbb{R} \leftrightarrow \mathbb{R}_{\pi_{1}^{2}} \pi_{12}
\end{gathered}
$$

Given $[a, b] \in \mathbb{R}^{2}$ let $f(x)=a+(b-a) x$.
Then $\varepsilon(f)=[f(0), f(1)]=[a, b]$, so ε is onto.
Let $g(x)=x$ and $h(x)=1-x$
then $\varepsilon(g)=[0,1]$ and $\varepsilon(h)=[1,0]$
So neither g nor h er ε, bout $\varepsilon(g h)=\varepsilon\left(x-x^{2}\right)=[0,0]$ f her ε
\therefore er ε is $n \delta t$ a prime ideal, so not maximal either.
For example, $\operatorname{ker} \varepsilon \underset{\neq}{C}$ per $\varepsilon_{0} \underset{\neq}{C} R$.
Slick proof: $B_{y} 1^{\text {st }}$ is isomorphism theorem $\frac{R}{\text { er } \varepsilon} \cong \operatorname{image}(\varepsilon)=\mathbb{R}^{2} \leftarrow$ not an integral domain, so not a field either.
6. Suppose $m, n, k \in \mathbf{N}$ with $\operatorname{lcm}(m, n)=k$. Define a group homomorphism $\varphi: \mathbf{Z} \rightarrow \mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ by $\varphi(i)=[i \bmod m, i \bmod n]$. Prove that $\operatorname{ker} \varphi=k \mathbf{Z}$. What does the first isomorphism theorem tell you about the image of φ ? What can you say about $\mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ if $\operatorname{gcd}(m, n)=1$?
let $\pi_{m}: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$
$\pi_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ se the natural projection.

$$
\left.\begin{array}{rl}
\operatorname{ker} \phi & =\left\{i: \phi(i)=0_{\mathbb{Z}_{m} \oplus z_{n}}\right\} \\
& =\{i:[i \operatorname{modm}, i \operatorname{modn}]=[0,0]\} \\
& =\{i: \quad i=0 \operatorname{modm} \& i \equiv 0 \bmod n\} \\
& =\{i: m|i \& n| i\} \quad \text { (all commontiples } \\
\text { milt } \\
\text { of } m, n
\end{array}\right)
$$

1S士 isomaphism the: $\frac{\mathbb{Z}}{\text { her } \phi} \cong$ image (φ)

$$
\begin{aligned}
& \therefore \operatorname{image}(\varphi) \cong \frac{\pi}{k \pi}=\pi_{k} \\
& \text { If } \operatorname{gcd}(m, n)=1, k=\operatorname{lcm}(m, n)=m n \\
& \underbrace{\operatorname{image}(\phi)}_{k=m n} \subseteq \underbrace{\mathbb{Z}_{m} \oplus \mathbb{Z}_{n}}_{m n} \\
& \therefore \quad \text { image }(\phi)=\mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \quad \text { (} \phi \text { is onto) } \\
& \therefore \mathbb{Z}_{m} \oplus \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}
\end{aligned}
$$

7. Show that the set of all polynomials in $\mathbf{Z}[x]$ with even constant term is a maximal ideal of $\mathbf{Z}[x]$. What is the quotient ring?
Let $I=\{p \in \mathbb{Z}[x]=$ const-term is even $\}=$

$$
=\{p \in Z[x]: p(0) \equiv 0 \bmod 2\}=\langle 2, x\rangle \text { (so an ideal) }
$$

Suppose J is an ideal, $I \subseteq J$. Then $\exists p \in J \backslash I$, i.e. $p(x)=a_{0}+a_{1} x+\ldots$ with $a_{0}=2 k+1$ for some k.

Then $1=\underbrace{p(x)}_{\in J}-\underbrace{2 k-x(a,+\ldots)}_{\in I \subset J} \in J$
$\therefore J=\pi[x]$
So I is maximal \because

Since T and $1+\mathbb{F}^{t}$ all polynomials with odd const. term parkin [x],
the quotient ring is \mathbb{Z}_{2}."
Slick proof with homs.:
Let $\varepsilon: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ be the evaluation homs. $\varepsilon(p)=p(0)$ and $\pi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$ the projection how. $\pi(n)=n \bmod 2$
Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{2}$ be the composition $\phi=\pi \circ \varepsilon$.
Then $I=$ er ϕ
Pf: $p \in \operatorname{ker} \phi \Leftrightarrow \phi(p)=p(0) \bmod 2=0 \Leftrightarrow p \in I \quad \ddot{ }$
Since π \& ε are onto, φ is onto.
By the $1^{\text {st }}$ iso. thu.. $\frac{\mathbb{Z}[x]}{I}=\frac{\mathbb{Z}[x]}{\operatorname{ker} \phi} \cong \operatorname{image}(\phi)=\mathbb{Z}_{2}$
Since \mathbb{Z}_{2} is a field, I is a maximal ideal of $\mathbb{Z}[x]$ i

