Midterm 2 / 2018.4.19 / MAT 4233.001 / Modern Abstract Algebra

1. Prove that the special linear group $SL_n(\mathbf{R})$ of all matrices with determinant 1 is a normal subgroup of the general linear group $GL_n(\mathbf{R})$ of all invertible $n \times n$ matrices with real coefficients. What is the quotient group?

Pf1 det is a hom :
$$GL_n(IR) \rightarrow IR^*$$

 $SL_n(IR) = \ker(\det)$
 $SL_n(IR) = \ker(\det)$
 $SL_n(IR) \triangleleft GL_n(IR)$
 $SL_n(IR) = \frac{GL_n(IR)}{\ker(\det)} \stackrel{\sim}{=} in(\det) = IR^*$
 $in(\det) = IR^*$
 $in(\det) = I \stackrel{\sim}{=} Id \in SL_n(IR)$
 $If A, B \in SL_n(IR), bet A = bet R = 1, so$
 $bet (A B^{-1}) = \frac{\det A}{\det IS} = \frac{1}{1} = 1 \stackrel{\sim}{=} AB^{-1} \in SL_n(IR)$
 $in SL_n(IR) < GL_n(IR), then$

 $l \neq A \in SL_n(IK), IS \in OL_h(II), Itel$ $det (B \neq B) = 1 . bet A \cdot det B = 1$ bet B $: SL_h(IB) < I G-L_h(IR)$

A f B are in the same coset of $SL_n(IR)$ $\iff AB^{-1} \in SL_n(R) \iff let(AB^{-1}) = 1$ $\iff letA = 1 \iff detA = betB : GL_n(IR) = R^*$ $GetB : GL_n(IR) : GL_n(IR) = R^*$ 2. Prove that the set of all rotations in the dihedral group D_n of all symmetries of the regular polygon with n vertices is a normal subgroup. What is the quotient group?

Again we have a how det:
$$D_n \rightarrow IR^*$$

Then $kwr(det) = \{all rotations in Dn \}$: $H \triangleleft D_n$
 H
 $B_y | \stackrel{\text{st}}{=} iso. Hom \frac{Dn}{H} = \frac{Dn}{ker(det)} \stackrel{\text{st}}{=} im(det) = \{i, -i\} \stackrel{\text{st}}{=} \mathbb{Z}_2$

(Alt. reason: $|H| = n = \frac{1}{2}|D_n|$ so there is only one nontrivial coset of $H = D_n \setminus H \{all \ Hips\}$) so left & right Cosets are the same :: $H < D_n$

- 3. Suppose X is a set and F is a field. Let R be the ring of all functions $X \to F$ with pointwise operations.
 - (a) What are the units of R? Prove your assertion.
 - (b) Use an explicit example to show that R may have zero divisors.

(a)
$$U(R) = \int f f R : \forall s \in X \quad f(s) \neq 0$$

Pf "=" If $\forall s \in X \quad f(s) \neq 0$, befine $g \quad bg$
 $g(s) = f(s)^{-1} \stackrel{(Fis + field)}{L} \quad f \cdot g = 1$, to $f \in U(R)$
"=>" If $f \in U(R)$, $\exists g \in R \quad fg = 1$
Then $\forall s \in S \quad (Fg)(s) = f(s)g(s) = 1$
 \therefore Since $F is = field \quad f(s) \neq 0$
(b) Let $\overline{X} = \{s, t\} \quad (s \neq t)$, $F = \mathbb{Z}_2$
Define $f_i g \in \mathbb{R}$ by $\frac{x \mid f(x)}{s \mid 0} \quad \frac{x \mid g(x)}{s \mid 0}$

Then
$$f_ig \neq 0$$
, But $fg \equiv 0$.

4. With R as in the preceding problem and $s \in X$, let $I = \{f \in R: f(s) = 0\}$. Prove that I is a maximal ideal of R.

2ero function
$$(s) = 0$$
 :. $0 \in I$
 $(I \notin f \in L, i.e. f(s) = q(s) = 0$, $(f - g)(s) = f(s) - g(s) =$
 $= 0 - 0 = 0$. $\therefore f - g \in I$ $\therefore I < R$
 $If \notin EI, g \in R$, $(fg)(s) = F(s)g(s) = 0$. $g(s) = 0$
 $\therefore \quad \ell g \in I$ $\therefore I$ is an ideal
 $f = f \in I, f \in I$ if $f = I$ is a rideal
 $f = f \in J \setminus I$. From $f \notin I$, $f(s) \neq 0$
het he R defined by $h(x) = f(s) \quad \forall x \in X$ (his const)
 $Since (h - \ell)(s) = h(s) - f(s) = f(s) - f(s) = 0$, $h - \ell \in I \subset J$
 $h = h - \ell + \ell \in T$ $\therefore I = R$
 $i = I = i = a$
 $i = I = i = a$

Alt. proof: We have the evaluation
$$hrm \mathcal{E}: \mathbb{R} \rightarrow \mathbb{F}$$

 $T = \ker \mathcal{E}$. By the 1^{d+1} iso. the $f \longrightarrow f(s)$
 $\frac{\mathcal{R}}{\mathcal{I}} = \frac{\mathcal{R}}{\ker \mathcal{E}} = \sin(\mathcal{E}) = \mathbb{F} = field$

$$\frac{\mathcal{E}(fg) = (fg)(s) = f(s)g(s) = \mathcal{E}(f)\mathcal{E}(g)}{\mathcal{E}(f+g) = (f+g)(s) = f(s)+g(s) = \mathcal{E}(f) + \mathcal{E}(g)}$$
 \therefore I is maximal
 i