Midterm 1 / 2018.2.22 / MAT 4233.001 / Modern Abstract Algebra

- 1. Suppose m and n are natural numbers. Prove that
 - (a) any common divisor of m and n divides gcd(m, n).
 - (b) lcm(m, n) divides any common multiple of m and n.

a) bet d be a common dinsor of m, n

Then
$$\exists m', n' = m'd = m'd$$
 $Be2ont: \exists s, t = \gcd(m,n) = sm + tn$
 $ged(m,n) = sm'd + tn'd = (sm'+tn')d$
 $dinder = \gcd(m,n) = dinder = dind$

2. Let $\alpha = (1, 2, 5, 4)(2, 6, 3)(5, 6, 3, 2, 1)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What is the order of α ? Simplify α^{61} .

Ruffin:
$$|\alpha| = |\alpha|(2,3) = 6$$

Ruffin:
$$|\alpha| = |\alpha|(2,3) = 6$$

 $61 = |mod 6| = |\alpha|(6) = |$

3. Suppose G is a group and every element, other than the identity, has order 2. Prove Gis commutative.

If
$$g \in C$$
, $g^2 = e$ (worke for e too: $e^2 = e$)

Let
$$x, y \in G$$

In general

In general
$$xyy^-/x^- = e$$

Now
$$xy = (xy)^{-1} = y^{-1}x^{-1} = y^{-1}$$

4. Suppose G is a multiplicative group, $x \in G$ and n is a natural number. Prove that $x^n = e$ if and only if the order of x divides n.

"=" Suppose
$$|x|$$
 divides n , then $3n'$ $n=n'/2)$

Then
$$x^n = x^{n'|x|} = \left(\frac{x^{|x|}}{e}\right)^n = e^{-\frac{x^n}{2}}$$

Div. alg:
$$\exists ! q, r \qquad n = q |x| + r$$

$$0 \le r < |x|$$

$$e = x^{1} = x^{91 \times 1 + r} = \left(\frac{x^{1 \times 1}}{e}\right)^{9} \cdot x^{r}$$

$$\therefore x^{r} = e \quad \text{but } r < |x| \quad \therefore r = 0$$

5. Define $\varphi, \psi: \mathbb{C}^* \to \mathbb{C}^*$ by $\varphi(z) = z^5$ and $\psi(z) = |z|$. Prove that φ and ψ are group homomorphisms. Describe and sketch their kernels. Are they cyclic groups? Explain.

$$\phi(zw) = (zw)^{S} \in z^{S} v^{S} = \phi(z)\phi(v)$$

$$(C^{*} is commutative)$$

$$\vdots \phi is a hom.$$

$$\phi(zw) = |zw| \in |z||w| = \psi(z)\psi(w)$$

$$ef: Let z = rei^{0}, w = sei^{1/2}$$

$$|zw| = (rsei^{1/2} + f^{S})| = rs = |z||w|$$

$$\vdots \psi is a hom.$$

$$leer \phi = \{z \in C^{*} : \phi(z) = 1\}$$

$$= \{z \in C^{*} : z^{S} = 1\}$$

=
$$\{5^{\frac{1}{5}} \text{ roots of annly}\}$$

= $\{2^{\frac{1}{5}k}: k=0,1,2,3,4\}$
= $\{e^{\frac{1}{27}/5}\} \cong \mathbb{Z}_{5}$ (equalic)

ker y= {2 + C*: \(\psi(2)=1\)} = { } & (* ! | 2) = 1 } = { unit circle} cyclic groups are Z Z or Zm for some m

S' is uncomtable so \$a bijection between 5' and 2 22m, so 5' is not applic