1. Suppose m and n are natural numbers. Prove that
(a) any common divisor of m and n divides $\operatorname{gcd}(m, n)$.
(b) $\operatorname{lcm}(m, n)$ divides any common multiple of m and n.
a) Let d be a common dinjor of m, n

Then $\exists m^{\prime}, n^{\prime} \quad m=m^{\prime} d \quad n=n^{\prime} d$
Bézout: $\exists s, t \quad \operatorname{gcd}(m, n)=\operatorname{sm}+t_{n}$

$$
\therefore \operatorname{gcd}(m, n)=s m^{\prime} d+t n^{\prime} d=\left(s m^{\prime}+t n^{\prime}\right) d
$$

$\therefore d$ divides ged $(m, n) \quad \ddot{\square}$
b) Let d be a common multiple of m, n
Div. Alg: $\exists!q, r \quad d=q \cdot \operatorname{lcm}(m, n)+r$ $0 \leq r<\operatorname{lcm}(m, n)$

$$
r=d-q \cdot \operatorname{lcm}(m, n)
$$

both common multiples of m, n
$\therefore r$ is a common multiple of m, n
Since $r<\operatorname{lcm}(m, n), r=0$.
2. Let $\alpha=(1,2,5,4)(2,6,3)(5,6,3,2,1)$ be a permutation (in cycle notation). Express α as a product of disjoint cycles. What is the order of α ? Simplify α^{61}.

$$
\alpha=\underbrace{(14)}_{\text {order } 2}(2)(\underbrace{365)}_{\text {order } 3}
$$

Ruffin:: $\mid \propto 1=\operatorname{lam}(2,3)=6$

$$
61 \equiv 1 \bmod 6 \alpha^{61}=\alpha^{60+1}=(\underbrace{\alpha^{6}}_{\varepsilon})^{10} \cdot \alpha=\alpha
$$

3. Suppose G is a group and every element, other than the identity, has order 2. Prove G is commutative.
If $g \in C, g^{2}=e \quad$ (works for e too: $e^{2}=e$)
So $g=g^{-1}$

Let $x, y \in G$

$$
\begin{aligned}
& \text { In general } \quad x y y^{-1} x^{-1}=e \\
\therefore & (x y)^{-1}=y^{-1} x^{-1}
\end{aligned}
$$

Now $\quad x y=(x y)^{-1}=y^{-1} x^{-1}=y x$
4. Suppose G is a multiplicative group, $x \in G$ and n is a natural number. Prove that $x^{n}=e$ if and only if the order of x divides n.
"E" Suppose $|x|$ divides n, then

$$
\exists n^{\prime} \quad n=n^{\prime}|x|
$$

Then $x^{n}=x^{n^{\prime}}|x|=(\underbrace{x^{|x|}}_{e})^{n}=e$
" \Rightarrow " Suppose $x^{n}=e$
Div. alg: $\exists!q, r \quad n=q|x|+r$ $0 \leq r<|x|$

$$
\begin{aligned}
e=x^{n} & =x^{9|x|+r}=(\underbrace{x^{|x|}}_{e})^{9} \cdot x^{r} \\
& \therefore x^{r}=e \quad, \text { but } r<|x| \quad \therefore r=0
\end{aligned}
$$

5. Define $\varphi, \psi: \mathbf{C}^{*} \rightarrow \mathbf{C}^{*}$ by $\varphi(z)=z^{5}$ and $\psi(z)=|z|$. Prove that φ and ψ are group homomorphisms. Describe and sketch their kernels. Are they cyclic groups? Explain.

$$
\phi(z w)=(z w)^{5} \Theta z^{5} w^{5}=\phi(z) \phi(w)
$$

(\mathbb{C}^{*} is commutative)
$\therefore \phi$ is a hor.

$$
\psi(z w)=|z w| E|\xi||w|=\psi(z) \psi(w)
$$

Pf: Let $z=r e^{i \theta}, w=s e^{i \beta}$

$$
\begin{aligned}
& \text { Let } z=r e, \quad w=s e 1 \\
& |z w|=\left(r s e^{i(\theta+\beta)}|=r s=|z|| w\right) \quad \ddot{u}
\end{aligned}
$$

$\therefore \psi$ is a how.

$$
\text { er } \begin{aligned}
\phi & =\left\{z \in \mathbb{C}^{*}: \phi(z)=1\right\} \\
& =\left\{z \in \mathbb{C}^{*}: z^{5}=1\right\}
\end{aligned}
$$

$=\left\{5^{\text {th }}\right.$ roots of unity?

$$
=\left\{e^{i \frac{2 \pi}{5} k}: k=0,1,2,3,4\right\}
$$

$$
=\left\langle e^{i 2 \pi / 5}\right\rangle \quad \cong \mathbb{Z}_{5}(\text { cyclic })
$$

$$
\begin{aligned}
\operatorname{ker} \psi & =\left\{z \in \mathbb{C}^{*}: \psi(z)=1\right\} \\
& =\left\{z \in \mathbb{C}^{*}:|z|=1\right\}
\end{aligned}
$$

$=\{$ unit circle $\}$
cyclic groups are $\cong \mathbb{Z}$ or $\mathbb{Z} m$ for some m
S^{\prime} is uncountable so \nrightarrow a bijection between S^{\prime} and $\mathbb{Z} \& \mathbb{Z m}$, so S^{\prime} is not ayelic

