1. Suppose X is a set, $s \in X$ and F is a field. Let R be the ring of all functions $X \rightarrow F$ with pointwise operations. Let $I=\{f \in R: f(s)=0\}$. Prove that I is a maximal ideal of R.

Claim: I is an ideal
(i) $0 \in I \quad\left(0 \Gamma_{x=0}=0\right)$
(ii) Let $f, g \in \Sigma$ then $f(s)=g(s)=0$

$$
\therefore(f-g)(s)=f(s)-g(s)=0-0=0 \therefore f-g \in I
$$

(iii) Let $f \in I, g \in R$. Then $f(s)=0$

$$
(f g)(s)=f(s) g(s)=0 \cdot g(s)=0 \quad \therefore f g \in I
$$

\therefore I is an ideal $\ddot{\square}$
Let K be an ideal of R s.t. $I \nsubseteq K$
let $g \in K \backslash I$. Since $g \notin I \quad g(S) \neq 0$
Define $h \in R$ by $h(x)=\left\{\begin{array}{l}0 \text { if } x=s \\ 1-g(x) \text { otherwise }\end{array}\right.$ since $g \in K, h \in J \subset K, g+h \in K$

$$
\begin{aligned}
& \text { But }(g+h)(x)=\left\{\begin{array}{l}
g(s) \text { for } x=s \\
\underbrace{g(x)+1-g(x)}
\end{array} \text { otherwise }\right\} \neq 0 \\
& \therefore K=R \quad \begin{array}{l}
\text { a } g+h \text { is } \\
\text { a unit }
\end{array}
\end{aligned}
$$

$\therefore I$ is maximal
With homs let $\varepsilon: R \rightarrow F$ be the evaluation

$$
\varepsilon(f)=f(s)
$$

Then clearly ε is a surjective how.
Also per $\varepsilon=I$
By $1^{\text {st }}$ iso. the $\quad \frac{R}{I} \cong F$
Since F is a field, I is a mar. ideal of R
2. Suppose R is as in the preceding problem and $t \in X$. Let $J=\{f \in R: f(s)=f(t)=0\}$.

Prove that if $t \neq s$, then J is an ideal of R which is not prime.
Given $c \in \mathcal{X}$ define $I_{c}=\{f \in R: f(c)=0\}$
By \#1 I_{c} is an ideal of R
$\therefore J=I_{s} \cap I_{t}$ is an ideal of R
Given $c \in X$, define $\delta_{c}(x)= \begin{cases}1 & \text { if } x=c \\ 0 & \text { otherwise }\end{cases}$
Then $\delta_{s}, \delta_{t} \notin J$
If $s \neq t \quad \delta_{s} \delta_{t}=0 \in J \quad \therefore J$ is not a prime idea

With hows: Define $\varepsilon: R \rightarrow F^{2}$ by

$$
\varepsilon(f)=[f(s), f(t)]
$$

Then her $\varepsilon=J$ and

if $S \neq t, \varepsilon$ is onto
Given $[u, v] \in F^{2},[u, v]=\Sigma(f)$ where

$$
\therefore \frac{R}{J} \cong F \times F
$$

$$
f(x)= \begin{cases}u & \text { if } x=s \\ v & \text { if } x=t \\ 0 & \text { otherwise }\end{cases}
$$

Since $F \times F$ is not an integral domain $([1,0] \cdot[0,1]=[0,0])$ J is not prime $:$
3. Find the quotient and remainder for $x^{5}+4 x^{3}+2 x^{2}+3$ divided by $x+6$ in $\mathbf{Z}_{7}[x]$.

$$
x+6 \underbrace{\frac{x^{5}+6 x^{4}}{-6 x^{4}+4 x^{3}+2 x^{2}+3}}_{\frac{x^{4}+x^{3}+5 x^{2}}{\frac{x^{5}+4 x^{3}+2 x^{2}+3}{x^{5}}} \text { quotient }} \begin{array}{r}
\frac{x^{4}+6 x^{3}}{-2 x^{3}+2 x^{2}+3} \\
\frac{3 x^{3}+\underbrace{30}_{2} x^{2}}{\text { (3) remainder }}
\end{array}
$$

4. Suppose F is a field and $s \in F$. Let $I=\{f \in F[x]: f(s)=0\}$. Use the division algorithm to prove that I is the ideal generated by $x-s$.

Since $x-\left.s\right|_{x=s}=0 \quad, x-s \in I$
Let $f \in I$. Div. Alg. $\Rightarrow \exists!q, r \in F[x]$ s.t-

$$
\begin{aligned}
& f(x)=q(x)(x-5)+r(x), \quad r(x)=0 \text { or } \operatorname{deg} r<\operatorname{deg}(x-s) \\
& \text { If } r(x)=0, f(x)=q(x)(x-5) \in\langle x-s\rangle \text { done }
\end{aligned}
$$

if $\operatorname{deg} r<\operatorname{deg}(x-s)=1$, $\operatorname{deg} r=0$, so $r=$ const.
Substitute $x=s$ into $f(x)=q(x)(x-s)+r$
Since $f(s)=0, r=0$ so done \ddot{u}

Suppose K is an ideal of $\mathbb{Z}[x]$ st. $J \subset K$
Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in K \backslash J$
If a_{0} is even, $\exists k \in \mathbb{Z} a_{0}=2 k$, so

$$
f(x)=2 k+\underline{x}\left(a_{1}+a_{2} x+\cdots\right) \in J \ddot{n}
$$

$\therefore a_{0}$ is odd, so $\exists k \in \mathbb{Z} \quad a_{0}=2 k+1$. Then

$$
\begin{array}{ll}
\underbrace{f(x)}_{\in K} & =1+\underbrace{2 k+x\left(a_{1}+\ldots\right)}_{\in J C K}
\end{array} \quad \therefore 1 \in K
$$

With homs Let $\varepsilon: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ be the evaluation how $\varepsilon(f)=f(0)$

Let π le the usual projection $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$
Compose: $\quad \mathbb{Z}[x] \xrightarrow{\varepsilon} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_{2}$
Clearly on to and er $(\pi \varepsilon)=J$
By IE iso. the $\frac{\mathbb{Z}[x]}{J} \cong \mathbb{Z}_{2}$
Since \mathbb{Z}_{2} is a field, J is a max. ideal of $\mathbb{Z}(x) \quad \ddot{ }$

