Midterm 2 / 2017.11.30 / MAT 4233.001 / Modern Abstract Algebra

1. Suppose X is a set, $s \in X$ and F is a field. Let R be the ring of all functions $X \to F$ with pointwise operations. Let $I = \{f \in R : f(s) = 0\}$. Prove that I is a maximal ideal of R.

$$\begin{array}{c} (laim: : \Gamma \quad is \quad an \quad ided\\ (i) \quad 0 \in T \qquad (\ 0 \ = 0)\\ _{X=0} \end{array}$$

$$(ii) \quad let \quad f,g \in T \quad then \quad f(s) = g(s) = 0 \quad \therefore \quad f-g \in T\\ \therefore \quad (f-g)(s) = f(s) = f(s) = 0 \quad g(s) = 0 \quad \therefore \quad f-g \in T\\ (iii) \quad let \quad f \in T, \quad g \in R \quad Then \quad f(s) = 0\\ \qquad (fg)(s) = f(s)g(s) = 0 \quad g(s) = 0 \quad \therefore \quad fg \in T\\ \quad \vdots \quad T \quad is \quad an \quad inleal \quad \vdots\\ let \quad K \quad be \quad an \quad inleal \quad G \quad K \quad T \quad \subseteq K\\ let \quad g \in K \setminus T \quad Since \quad g \notin T \quad g(s) \neq 0\\ Define \quad h \in R \quad by \quad h(x) = \begin{cases} 0 \quad if \ \chi = s\\ 1 - g(x) \quad otherwise} \end{cases}$$

$$since \quad g \in K, \quad h \in J \subset K, \quad g + h \in K\\ Bu + (g + h)(x) = \begin{cases} g(s) \quad fw \quad \chi = s\\ g(x) + 1 - g(x) \quad otherwise} \end{cases} \notin 0\\ \vdots \quad K = R \quad 1 \quad a \quad unit in R\\ : \quad T \quad is \quad maximal\\ With homs \quad bet \quad E: \quad R \quad \to F \quad be \quad the \quad evaluation hom \quad S(f) = f(s)\\ Then \quad clearly \quad E \quad is \quad a \quad Anr \quad gethre hom.\\ Also \quad her \quad E = T\\ B_{y} \quad I^{st} \quad iso. \quad thm \quad R \quad \cong T\\ Since \quad F \quad is \quad c \quad Jielk, \quad T \quad is \quad wax. \quad ideal of R \end{cases}$$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

2. Suppose R is as in the preceding problem and $t \in X$. Let $J = \{f \in R: f(s) = f(t) = 0\}$. Prove that if $t \neq s$, then J is an ideal of R which is not prime.

Given
$$C \notin X$$
 define $\mathbb{I}_{C} = \{f \in \mathbb{R} : f(c) = 0\}$
By #1 \mathbb{I}_{C} is an ideal of \mathbb{R}
 $: J = \mathbb{I}_{S} \cap \mathbb{I}_{t}$ is an ideal of \mathbb{R}
Given $C \notin X$, define $\int_{C} (x) = \begin{cases} 1 & if x = 0 \\ 0 & ofherwise \end{cases}$
Then $\int_{S} \int_{S} \int_{t} \notin J$
If $S \neq t$ $\int_{S} \int_{t} = 0 \notin J$ $: J$ is not a prime ideal

With hows: Define
$$E: R \rightarrow F^2$$
 by
 $E(f) = [f(s), f(t)]$
 $E_s / E_s / E_s$
Then her $2 = J$ and
 $F = F^{\pi F} \rightarrow F$
if $S \neq t$, Σ is onto
fiven $[u,v] \in F^2$, $[u_1v] = \Sigma(f)$ where
 $f(x) = \begin{cases} u & if x = s \\ v & if x = t \end{cases}$
 $f(x) = \begin{cases} u & if x = s \\ v & if x = t \end{cases}$
Since $F \times F$ is not an integral domain $([i,o]:[o,i]=[o,o])$
 J is not prime z

3. Find the quotient and remainder for $x^5 + 4x^3 + 2x^2 + 3$ divided by x + 6 in $\mathbb{Z}_7[x]$.

$$\begin{array}{c} x^{4} + x^{3} + 5x^{2} \\ x^{5} + 4x^{3} + 2x^{2} + 3 \\ x^{5} + 6x^{4} \\ \hline -6x^{4} + 4x^{3} + 2x^{2} + 3 \\ 1 \\ x^{4} + 6x^{5} \\ \hline -2x^{3} + 2x^{2} + 3 \\ 5x^{3} + 30x^{2} \\ \hline 2 \\ \end{array}$$

4. Suppose F is a field and $s \in F$. Let $I = \{f \in F[x]: f(s) = 0\}$. Use the division algorithm to prove that I is the ideal generated by x - s.

Since
$$x-s|_{x=s} = 0$$
, $x-s \in \mathbb{I}$
Let $f \in \mathbb{I}$. Div. Alg. $\Rightarrow \exists !q, r \in F[x] \quad s.t.$
 $f(x) = q(x)(x-s) + r(x)$, $r(x) = 0$ or deg $r \ge deg(x-s)$
If $r(x)=0$, $f(x) = q(x)(x-s) \in \langle x-s \rangle$ done
if deg $r < deg(x-s) = 1$, $degr = 0$, so $r = const$.
Substitute $x=s$ into $f(x) = q(x)(x-s) + r$
Since $f(s)=0$, $r = 0$ so done \because

5. Let J be the ideal generated by x and 2 in $\mathbf{Z}[x]$. Prove that J is a maximal ideal.

Inppose K is an ideal of
$$Z(x)$$
 s.t. $J \in K$
bet $f(x) = a_0 + a_1 \times + \dots + a_n \times^n \in K \setminus J$
If a_0 is even, $\exists k \in \mathbb{Z} \ a_0 = 2k$, $s = f(x) = 2k + x(a_1 + a_2 \times + \dots) \in J$
:. a_0 is odd, $s_0 \exists k \in \mathbb{Z} \ a_0 = 2k + 1$. Then
 $f(x) = 1 + 2k + x(a_1 + \dots)$
:. $i \in K$
:. $K = Z[x]$
:. J is maximal \subset

With hous bet
$$\varepsilon : \mathbb{Z}[x] \rightarrow \mathbb{Z}$$
 be the
evaluation from $\mathcal{E}(\mathcal{F}) = \mathcal{F}(0)$
bet Π be the usual projection $\mathbb{Z} \rightarrow \mathbb{Z}_2$
Compose: $\mathbb{Z}[x] \xrightarrow{\mathcal{E}} \mathbb{Z} \xrightarrow{\mathcal{T}} \mathbb{Z}_2$
 $\operatorname{Clearly onto}$ and $\operatorname{ber}(\mathcal{T}\mathcal{E}) = \mathbb{J}$
By 1st iso, then $\frac{\mathbb{Z}(x)}{\mathbb{J}} \cong \mathbb{Z}_2$
Since \mathbb{Z}_2 is a field, \mathbb{J} is a maxideal of $\mathbb{Z}(x)$ is

.