Final exam / 2017.12.11 / MAT 4233.001 / Modern Abstract Algebra

1. Let $m \in \mathbb{N}$ and $m\mathbb{Z} = \{mk: k \in \mathbb{Z}\}$. Prove $m\mathbb{Z}$ is an ideal of \mathbb{Z} . Conversely, prove that any ideal of \mathbb{Z} is of this form.

2. Suppose $\alpha = (1, 6, 2, 5, 3)(4, 7, 3, 5, 1, 2)(2, 6)$ is a permutation (in cycle notation). What is the order of α ? What is the parity of α ? Express α^{404} as a product of disjoint cycles.

3. Prove that the set of all rotations in the dihedral group D_n is a normal subgroup of D_n . Exhibit a subgroup of D_4 that is not normal. Explain.

 $\{All solations\} = lear det (det: D_n \rightarrow \{i, -i\})$ $\therefore \{a(1 rotations\} \leq D_n$

Let
$$F_i \in D_{ij}$$
 be the flip $\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
 $\langle F_i \rangle = \begin{cases} \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \end{cases}$
 R_o

Let
$$F_z \in D_4$$
 be the flip $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
(w.r.t main diagonal)
 $F_z^{-1}F_iF_z = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & i \end{bmatrix} \notin \langle F_i \rangle$
 $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
:. $\langle F_i \rangle \not = D_4$

4. How many group homomorphisms are there from \mathbf{Z} to \mathbf{Z}_{40} ? How many of them are one-to-one? How many of them are onto?

Given a hom
$$\phi: \mathbb{Z} \to \mathbb{Z}_{40}$$

 $\phi(1), \phi(2), \dots \in \mathbb{Z}_{40}$ connot all distinct
by the pigeonhole principle
 $\therefore 3 \ 4 \neq j$ $\phi(k) = \phi(j) \therefore \phi$ is not 1-1
 $\therefore No homs \mathbb{Z} \to \mathbb{Z}_{40}$ are 1-1.

Given
$$\varphi: \mathcal{R} \rightarrow \mathcal{R}_{40}$$
, $\inf \varphi = \langle \varphi(1) \rangle$
(Given $y \in \inf \varphi$, $3k$, $y = \varphi(k) = k \varphi(1)$)
 $: \inf \varphi = \mathcal{R}_{40} \iff \varphi(1)$ generates \mathcal{R}_{40}
 $\iff gcd (\varphi(1), 40) = 1$
 $: \text{ the Number of onto homs } \mathcal{R} \rightarrow \mathcal{R}_{40} \text{ is}$
 $\operatorname{Enler's} to tient = \langle \varphi(40) = \varphi(2^3 \cdot 5)$
 $= \langle \varphi(2^3) \varphi(5) = (2^3 - 2^2)(5 - 1) = 16$
Ithe UNIVERSITY OF TEXAS AT SAN ANTONIO

5. Suppose G is finite group of order n and $a \in G$. Prove that $a^n = e$. What can you conclude about the order of a, if n is prime? What can you conclude about groups of prime order?

By Lagrange's theorem
$$|a| = |\langle a \rangle|$$
 divides $|G|$
 $(|G| = |\langle a \rangle| \cdot [G : \langle a \rangle])$
 $I = |\langle a \rangle| \cdot [G : \langle a \rangle]$
 $index (call it q)$
 $|a| \cdot q = h$
 $a^{n} = (a^{|a|})^{q} = e^{q} = e^{-1}$

6. Let \mathbf{C}^* denote the multiplicative group of nonzero complex numbers. Define $\varphi : \mathbf{R} \to \mathbf{C}^*$ by $\varphi(t) = e^{2\pi i t}$. Prove that φ is a group homomorphism. What are its kernel and image? What conclusion can you draw from the First Isomorphism Theorem?

$$\varphi(s+t) = e^{2\pi i (s+t)} = e^{2\pi i s + 2\pi i t}$$
$$= e^{2\pi i s} \cdot e^{2\pi i t} = \varphi(s)\varphi(t) \quad \therefore \varphi \text{ is a hom}$$

Seker
$$\varphi \stackrel{(=)}{=} \varphi(s) = |$$

 $\stackrel{(=)}{=} e^{2\pi i s} = |$
 $\stackrel{(=)}{=} Jk \quad \Im\pi s = \Im\pi k$
 $\stackrel{(=)}{=} s \in \mathbb{Z}$

: lear op = Th

$$Z \in im \varphi \stackrel{(=)}{=} \exists S \qquad \varphi(S) = Z$$

$$\stackrel{(=)}{=} \exists S \qquad e^{2\pi i S} = Z$$

$$\stackrel{(=)}{=} [2] = 1$$

$$\therefore im \varphi = S' \quad (unit circle)$$

$$1^{S+} i_{So} : \frac{R}{ker \varphi} \stackrel{(=)}{=} im \varphi \qquad :: unit circle \stackrel{(=)}{=} \frac{R}{Z}$$

7. Suppose F is a field and p is polynomial in F[x] of degree 2 or 3. Prove that p irreducible if and only if p has no roots in F. Give an explicit counter example for degree 4.

p is reducible (=> p has a root in F
if p is reducible, write
$$p = fg$$
 where
dag f, $g \ge 1$ if dag $p = dag f + dag g \le 3$
One of f and g has dag 1, is has a root,
So p has a root $:$
Conversely suppose $p(a) = 0$
Div. alg. : $\exists ! q(x), r(x) \quad p(x) = (x - a)q(x) + r(x)$
 $r \equiv 0$ or day $r < 1$
if $r \equiv 0$, done. If not r is a nonzero const
so $p(x) = (x - a)q(x) + r$
 $r \equiv 0 : \int q(a) + r$
 $r \equiv 0 : \int q(a) + r$

For deg 4 let
$$p(x) = (1 + x^2)^2$$
, then
p is reducible, but has no roots.

8. Let J be the ideal generated by x and 3 in $\mathbf{Z}[x]$. Prove that J is a maximal ideal.

$$J = \{3 \cdot p(x) + \chi \cdot q(x) : p_1 q \in \mathbb{Z}[x_3]\}$$

$$= \{a_0 + a_1 \chi + \dots + a_n \chi^n : a_0 \equiv 0 \mod 3\}$$
Suppose K is an ideal of $\mathbb{Z}[x_3], J \subseteq K$.
Let $p(x) \in K \setminus J$. Then $p(0) \notin 0 \mod 3$
Then $p(0) = \pm 1 \mod 3$
Case: $p(0) = -1 \mod 3$
 $\exists k \qquad p(0) = -1 + 3k$
 $p(x) = -1 + 3k + a_1 \chi + a_2 \chi^2 + \dots + a_n \chi^n$
 $\in T \subset K$
 $\therefore -1 \in K$ $\therefore K = \mathbb{Z}[x_3] \qquad \therefore J \text{ is max-}$
 $\inf \lim_{x \to \infty} \lim_{x \to \infty} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_3$ is an onto hom
with kar $\Psi = J [\Psi(p(x_3)) = \pi(p(0)) = \pi(p(0))$
 $\therefore \Psi(p(x_3)) = 0 \iff p(0) = 0 \mod 3]$

$$\frac{\mathbb{Z}[k]}{\langle 2, x \rangle} = \mathbb{Z}_{3} \leftarrow \text{field } \therefore \text{ Jis max}$$