Midterm 2 / 2017.4.20 / MAT 4233.001 / Modern Abstract Algebra

1. Let $G = Gl(n, \mathbf{R})$ be the multiplicative group of all invertible $n \times n$ real matrices, K a multiplicative subgroup of nonzero real numbers \mathbf{R}^* and $H = \{A \in G: \det A \in K\}$. Prove that H is a normal subgroup of G.

$$eet (AB^{-1}) = det A \cdot det B^{-1} \in K$$

$$: H < G((u, R))$$

Suppose A E GR(n, 1B), B EH det (ABA⁻¹) = det A - det B - (det A)⁻¹ = det B EK

:- H < Ge(n, R)

Alt: $G(n, R) \xrightarrow{\text{bet}} R^* \xrightarrow{\pi} K^*$

ker TI = K, So ker (det o TI) = H "

2. Find (with proof) a group homomorphism on the symmetric group S_n of all permutations on *n* elements (to a suitable range), whose kernel is the alternating subgroup A_n of all even permutations.

Define
$$\varphi: S_n \rightarrow Z_2$$
 by
 $\varphi(\tau) = \begin{cases} 0 & \text{if } \tau \in A_n \\ 1 & \text{ortherwise} \end{cases}$
Claim: φ is a group hom
Let $\zeta, \tau \in S_n$. Consider coses:
1. ζ, τ both even
2. ζ even, τ odd
3. ζ odd, τ even
4. ζ odd, τ even
4. ζ odd, τ even
 $\zeta = \zeta, \tau = \zeta = \varepsilon even$, we can write
 $\zeta = \zeta, \tau_2 \dots d_n$, $\tau = \beta_1, \beta_2 \dots \beta_m$
where $n \ q \ m \ are even$
Then $\zeta = \zeta_1, \sqrt{2} \dots \sqrt{n\beta}, \dots \beta_m$ is even
 $\frac{1}{2} (\zeta \tau) = 0$ $\varphi(\zeta) + \varphi(\tau) = 0 + 0 = 0$
 $\varphi(\zeta \tau) = 1$ $\varphi(\zeta) + \varphi(\tau) = 0 + 1 = 1$
Cose 3 similar to Case2
Case 4 $odd = even$
 $\varphi(\zeta \tau) = 0$ $\varphi(\zeta) + \varphi(\tau) = 1 + 1 = 0$ ζ'

3. Let R be the ring of all functions $\mathbf{R} \to \mathbf{R}$ with pointwise operations and let $a \in \mathbf{R}$. Prove that $I = \{f \in R: f(a) = 0\}$ is a maximal ideal of R.

PF2 Define $\Sigma: R \longrightarrow R$ by $\Sigma(f) = f(a)$ Σ is a hom: $\Sigma(fg) = (fg)(a) = f(a) \cdot g(a) = \Sigma(f) \cdot \Sigma(g)$ ker $\Sigma = I$ By I^{S+} iso. thus $\frac{R}{I} = im(\Sigma) = R$ T field $\therefore I$ is a max ideal of R. 4. With R as in the preceding problem, let $a \neq b \in \mathbf{R}$. Prove that $J = \{f \in R: f(a) = 0, f(b) = 0\}$ is an ideal of R that is not prime. Find (with proof) two prime ideals containing J.

4 Pf 1 * If
$$f \equiv 0$$
, $f(a) = 0$ and $f(b) = 0$
50 the zero function $\in J$.
* Given $l, g \in J$, $(f - g)(a) = f(a) - g(a) = 0 - 0 = 0$
and similarly for b , so $f - g \in J$
Given $f \in J$, $g \in R$, $(fg)(a) = f(a)g(a) = 0 - g(c) = 0$
 $similarly for b$, so $f - g \in J$.
 $\therefore J$ is an ideal of R .
 $x - a \notin J$, $x - b \notin J$, but $(x - x)(x - b) \in J$
 $\therefore J$ is only prime \square
 $J \subseteq S f \in R : f(a) = 03$ which is a maximal ideal by #3
Similarly for b . \square
 $ff 2$ Define $\Sigma : R \longrightarrow R^2$ by $\Sigma(f) = [f(a), f(b)$
 z is a hom (cosy to show, so inter to #3) \square
 Σ is onto : Given $[r, s] \in R^2$, let $f(x) = \frac{s - r}{b - a} (x - a) + r$.
Thus $f(a) = r$, $f(b) = s$, so $\Sigma(f) = Lr, s]$
 $z = T = ker \Sigma$
 $g = By the | S^{\pm}$ is onumphism theorem, $\overline{R} \cong IR^2$
 T is a Ω into an integral domain
 $(Li, \sigma) \cdot Lo, 1] = Lo, 0$

5. Suppose F is a field and p is polynomial in F[x] of degree 3. Prove that p irreducible if and only if p has no roots in F.

Sn ppose
$$p(e) = 0$$
 for some $a \in F$
long div: $\exists ! q(n, r(n) \quad s.t.$
 $p(x) = (x-a)q(x) + r(x)$
 $r = 0$ ar beg $r < deg(x-a) = 1$
(some)
 $leg r = 0$
 $r = const$
 $0 = p(n) = 0 \cdot q(a) + r$
 $\vdots r = 0$
 $\therefore p(x) = (x-a)q(x)$
 $\therefore p : s reducible.$
Conversely Sn ppose p is reducible, then
 $\exists r, s \in F(x) \quad p = r \cdot s \quad leg r, leg s \neq 0$
Possibilities for degrees (degr + deg s = 3) $r = \frac{1}{2}$
 $\vdots leg r = 1$ or leg s = 1
If deg r = 1, r has a zero, so p has a zero
Similarly if deg s = 1.