Midterm 1 / 2017.2.23 / MAT 4233.001 / Modern Abstract Algebra

1. Let $m \in \mathbb{N}$ and $m\mathbb{Z} = \{mn: n \in \mathbb{Z}\}$. Prove $m\mathbb{Z} < \mathbb{Z}$. Conversely, prove that any subgroup of \mathbb{Z} is of this form.

Hint: given $H < \mathbf{Z}$, let m be the smallest positive element of H.

2. Suppose $\alpha = (1, 2, 3)(2, 3, 4, 5)$ is a permutation (in cycle notation). What is the order of α ? What is the parity of α ? Express α^{2017} as a product of disjoint cycles.

3. Suppose G is finite group of order n and $a \in G$. Prove that $a^n = e$. What conclusions can you draw about the order of a, if $a \neq e$ and n is prime? What conclusion can you draw about groups of prime order?

4. Let $H = \{z \in \mathbb{C}: z^n = 1\}$. Prove that H is a subgroup of \mathbb{C}^* isomorphic to \mathbb{Z}_n .

1.
$$H < C^{*}$$

 $1^{n} = 1$, so $1 \in H$
Suppose $x, y \in H$. Then $x^{n} = 1$, $y^{n} = 1$
 $(x y^{-1})^{n} = x^{n} y^{-n} = x^{n} (y^{n})^{-1} = 1 \cdot 1^{-1} = 1$
 $\therefore x y^{-1} \in H$

2.
$$e^{2\pi i k/n}$$
, $k = 0, i, ..., n-1$ \leftarrow all historiet
Also $\frac{2}{2}^{m} = 1$ has at most n bistrinet zoots
(factor $\frac{2}{2}^{m} = 1$)
 $\therefore H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : k = 0, ..., n-1 \right\} = \left\langle e^{2\pi i n} \right\rangle$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : e^{2\pi i n} \right\}$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : e^{2\pi i n} \right\}$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : e^{2\pi i n} \right\}$$

$$H = \left\{ \left(e^{2\pi i n} \right)^{k} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} : e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi i n} : e^{2\pi i n} : e^{2\pi i n} : e^{2\pi i n} \right\}$$

$$H = \left\{ e^{2\pi i n} : e^{2\pi$$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

5. Prove $\operatorname{Aut}(\mathbf{Z}) \cong \mathbf{Z}_m \ (m = ?)$

A hom
$$\phi: \mathbb{Z} \to \mathbb{Z}$$
 is uniquely determined by
a (free) choice of $\phi(1)$ $\phi(k) = k \phi(1)$
Since $W(\mathbb{Z}) = \{1, -1\}$, if ϕ is an iso
 $\phi(1) = 1 \text{ ar } -1$ $\phi(k) = k$ or $\phi(k) = -k$
Aut $(\mathbb{Z}) = \{2, \psi\}$, where $2(k) = k$, $\psi(k) = -k$
Any group of order 2 is $\leq \mathbb{Z}_2$ "
More explicitly define \mathbb{T} : Aut $\mathbb{Z} \to \mathbb{Z}_2$ by
 $\mathbb{T}(\xi) = 0, \mathbb{T}(\psi) = 1$. Clearly 1-1 & onto
Verify \mathbb{T} is a hom, e.g.
 $\mathbb{T}(\psi) = \mathbb{T}(\xi) = 0$ $\int =$ "
 $\mathbb{T}(\psi) + \mathbb{T}(\psi) = (+1) = 0$
 $etc.$
 $\therefore \mathbb{T}$ is an iso "

$$T_{ake 2}: Define \varphi: Z \to C^{*}$$

$$\varphi(ke) = e^{2\pi i k/n}$$

Don't have to prove well-def'd
ker $\varphi = ?$ if $\varphi(ke) = 1$, then $e^{2\pi i k/n} = 1$
so $n | k$ (some as before)
Conversely if $n | k$, then $\varphi(ke) = e^{2\pi i k/n} = 1$
ker $\varphi = n \mathbb{Z}$, meanwhile in $\varphi = H$
 $1 \leq 1 \leq n$