1. Suppose $f:[0, \infty) \rightarrow \mathbf{R}$ is a decreasing function. Prove that f only if $f(0)=\sup \{f(x): x>0\}$.

\Rightarrow (i) $f(0)$ is an upper bound for $\{f(x): x>0\}$
Pf Since f is decreasing, $\forall x>0 \quad f(x) \leqslant f(0) \ddot{\sim}$
(ii) If $r<f(0)$, then r is not an upper bound for $\{f(x): x>0\}$. Pf Let $\varepsilon=f(0)-r$. Then $\varepsilon>0$, so since f is cont. at 0 $\bar{\exists} \delta>0 \quad \underbrace{x \in[0, \infty) \&|x-0|<\delta}_{0 \leq x<\delta} \Rightarrow \underbrace{|f(x)-f(0)|<\varepsilon}_{f(x)>r}$ Pick any $x \in(0, \delta)$, e.g. $x=\frac{\delta}{2}$. Then $x>0$ \& $f(x)>r$ ~ \Leftarrow Given $\varepsilon>0$, Let $r=f(0)-\varepsilon$.

$$
\text { Then } r<f(0)=\sup \{f(x): x>0\}
$$

so r is not an upper bound for $\{f(x): x>0\}$, so $\exists \delta>0 \quad r<f(\delta)$
Suppose $x \in[0, \infty) \&|x-0|<\delta$. Then $0 \leqslant x<\delta$,
So since f is decl., $r=f(0)-\varepsilon<f(\delta) \leqslant f(x) \leqslant f(0)$.

$$
\begin{aligned}
& \therefore \quad 0 \leq \underline{f(0)-f(x)<\varepsilon} \\
& \text { So }|f(x)-f(0)|=f(0)-f(x)<\varepsilon \varepsilon_{\text {the Unverast of texas at san antonio }}
\end{aligned}
$$

2. Suppose $f(x)=x^{3} \cos (1 / x)$ for $x \neq 0$ and $f(0)=0$. Prove that f is differentiable at 0 .

$$
\begin{aligned}
& \frac{f(x)-f(0)}{x-0}=\frac{x^{3} \cos \left(\frac{1}{x}\right)-0}{x-0}=\frac{x^{3} \cos \left(\frac{1}{x}\right)}{x}=x^{2} \cos \left(\frac{1}{x}\right) \rightarrow 0 \\
& \text { af } \\
& \text { Pf Square law: } 0 \underbrace{0}\left|x^{2} \cos \left(\frac{1}{x}\right)\right| \leq x^{2}\left|\cos \left(\frac{1}{x}\right)\right| \leq x^{2}
\end{aligned}
$$

3. Prove that for $t>1$ we have $\ln (t)<t-1$.

Let $f(t)=\ln (t)$, then $f^{\prime}(t)=\frac{1}{t}$
Let $t>1$. By MVT $\exists x \quad 1<x<t$ st.

$$
\underbrace{f(t)-f(1)}_{\ln t}=\underbrace{f^{\prime}(x)}_{\frac{1}{x}}(t-1)
$$

Since $x>1 \Rightarrow \frac{1}{x}<1 \quad \ln t<t-1$

