1. Show that if two continuous functions from reals to reals agree on rationals, they must be the same function.
a) If $c \in \mathbb{R} \quad \exists x_{n} \in \mathbb{Q} \quad x_{n} \rightarrow C$

Pf Since \mathbb{Q} is dense in $\mathbb{R} \forall_{n} \exists x_{n} \in \mathbb{Q}$ sot. $c<x_{n}<c+\frac{1}{n}$. Since $c+\frac{1}{n} \rightarrow c$ by the squeeze law $x_{n} \rightarrow c \quad \because$
b) By the sequential criterion fer continuity, if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are cont. $f\left(x_{n}\right) \rightarrow f(c)$ and $g\left(x_{n}\right) \rightarrow g(c)$
If $f \& g$ agree on $\mathbb{Q} f\left(x_{n}\right)=g\left(x_{n}\right)$. So by uniqueness of limit $f(c)=\underset{\sim}{v}(c)$
2. Suppose $f:[0,1] \rightarrow[0,1]$ is continuous. Prove that f has a fixed point: $x \in[0,1]$ such that $f(x)=x$.

$$
\begin{aligned}
& \text { let } g(x)=f(x)-x \\
& \text { Then } g \text { is cont. } \\
& g(0)=f(0)-0=f(0) \geqslant 0 \\
& g(1)=f(1)-1 \leqslant 0 \\
& \text { If } f(0)=0 \text { done, so WLOG assume } g(0)>0 \\
& \text { (f } f(1)=1 \text { done, so LoG assume } g(1)<0 \\
& \text { By IVT } \exists z \in(0,1) \text { set. } \underbrace{g(z)}=0 \\
& f(z)-z \\
& \text { So } f(z)=z \quad \ddot{u}
\end{aligned}
$$

3. Prove that the function $f(x)=\sqrt{x}$ is Lipschitz on the interval $[1, \infty)$. Why can we conclude that f is uniformly continuous on $[0, \infty)$?
a) For $x, y \in[1, \infty), \quad x, y \geqslant 1$, so

$$
\begin{aligned}
& \sqrt{x}, \sqrt{y} \geqslant 1, \text { so } \sqrt{x}+\sqrt{y} \geqslant 2, \text { so } \frac{1}{\sqrt{x}+\sqrt{y}} \leq \frac{1}{2} \\
& |\sqrt{y}-\sqrt{x}|=\frac{|y-x|}{\sqrt{y}+\sqrt{x}} \leq \frac{1}{2}|y-x|
\end{aligned}
$$

b) Since f is Lipschitz on $[1, \infty)$, f is unit. cont. on $[1, \infty)$
(Given $\Sigma>0$, let $\delta=\frac{\varepsilon}{K}=2 \varepsilon$ etc.)
By the Uniform Contimity theorem, f i unif. cont. on $[0,2]$

Combine intervals: $[0,2] \cup[1, \infty)=[0, \infty)$ (Given $\varepsilon>0$
let $\delta=\min \left(\delta_{1}, \delta_{2}, 1\right)$ For $|x-y|<1, x, y$ \uparrow from are in one of the from cont. un'f.cont. intervals unif.cont, unis. cont, on $[0,2]$ on $[1, \infty$)

4. Give an example of a function $f:(0,1) \rightarrow \mathbf{R}$ that is bounded, continuous, but not uniformly continuous. Explain.

Let $f:(0,1) \rightarrow \mathbb{R}$ be $f(x)=\cos \left(\frac{1}{x}\right)$ $\left|\cos \left(\frac{1}{x}\right)\right| \leq 1$ so f is bounded.

Since $x \neq 0$ on $(0,1), \frac{1}{x}$ is cont.
Also $\cos (x)$ is cont., so the composition $\cos \left(\frac{1}{x}\right)$ is cont. on $(0,1)$
Let $x_{n}=\frac{1}{n \pi}$. Then $x_{n} \rightarrow 0$, so $\left(x_{n}\right)$ is a Cauchy seq.
Uniformly cont. functions carry Cauchy seq. to Cauchy seq., but $f\left(x_{n}\right)=\cos (n \pi)=(-1)^{n}$ is $n \delta 7$ (anchy
$\therefore f$ is not unif. cont.

