1. Show that if two continuous functions from reals to reals agree on rationals, they must be the same function.

2. Suppose $f: [0,1] \to [0,1]$ is continuous. Prove that f has a fixed point: $x \in [0,1]$ such that f(x) = x.

Let
$$g(x) = f(x) - x$$

Then g is cont.
 $g(0) = f(0) - 0 = f(0) ≥ 0$
 $g(1) = f(1) - 1 ≤ 0$

If f(0)=0 done, so WLOG assume g(0)>0(f f(1)=1 done, so WLOG assume g(1)<0By IVT $\exists z \in (0,1)$ s.t. g(z)=0 f(z)-zf(z)=z \bigcup 3. Prove that the function $f(x) = \sqrt{x}$ is Lipschitz on the interval $[1, \infty)$. Why can we conclude that f is uniformly continuous on $[0, \infty)$?

a) For
$$x, y \in L_{1,\infty}$$
, $x, y \ge 1$, to
 $\sqrt{x}, \sqrt{y} \ge 1$, to $\sqrt{x} + \sqrt{y} \ge 2$, to $\frac{1}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}$
 $|\sqrt{y} - \sqrt{x}| = \frac{|y - x|}{\sqrt{y} + \sqrt{x}} \le \frac{1}{2} |y - x|$ is
b) Since f is hipschitz on $[1,\infty)$,
f is unif. cont. on $[1,\infty)$
(Given $2 > 0$, let $\delta = \frac{2}{K} = 28$ etc.)
By the Uniform Continuity Theorem,
f is unif. cont. on $[0,2]$
Combine intervals: $[0,2] \cup [1,\infty) = [0,\infty)$
(Given $E > 0$
let $\delta = \min(\delta_1, \delta_2, 1)$ For $|x - y| < 1, x, y$
from are in one of the
unif. cont. unif. cont. intervals
 $\delta = [0,2]$ on $[1,\infty)$

4. Give an example of a function $f: (0,1) \to \mathbf{R}$ that is bounded, continuous, but not uniformly continuous. Explain.

Let
$$f:(o,1) \rightarrow \mathbb{R}$$
 be $f(x) = \cos(\frac{1}{x})$
 $|\cos(\frac{1}{x})| = 1$ so f is bounded.
Since $\chi \neq 0$ on $(o,1)$, $\frac{1}{x}$ is cont.
Also $\cos(x)$ is cont., so the composition
 $\cos(\frac{1}{x})$ is cont. on $(o,1)$
Let $\chi_n = \frac{1}{n\pi}$. Then $\chi_n \rightarrow 0$, so
 (χ_n) is a Cauchy seq.
Uniformly cont. functions carry Cauchy
seq. to Cauchy seq., but
 $f(\chi_n) = \cos(n\pi) = (-1)^n$ is not Cauchy
 \therefore f is not unif. cont.