Final exam / 2016.12.14 / MAT 4213.001 / Real Analysis I

1. Suppose
$$A = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbf{N} \right\}$$
 and $f : A \to \mathbf{R}$ is a bounded function.

- (a) Find all cluster points of A (with proof).
- (b) State the definition of limit and use it to prove that $(x-1)f(x) \to 0$ as $x \to 1$.

a) Cluster points of
$$A = 1, -1$$

Pf As $n \to \infty$ $\frac{n}{n+1} = \frac{1}{1+y_n} \to 1$
: Given $E > 0 \exists m_{\mathcal{E}} \forall k \equiv m_{\mathcal{E}} 0 < |1 - \frac{k}{k+1}| < \varepsilon$ $(\frac{k}{k+1} \in V_{\mathcal{E}}(1) \setminus \{i\})$
If k is even, $\frac{k}{k+1} \in A$, so $V_{\mathcal{E}}(1) \setminus \{i\} \cap A \neq \phi$
If k is even, $\frac{k}{k+1} \in A$, so $|-1 + \frac{k}{k+1}| < \varepsilon$, so $V_{\mathcal{E}}(1) \setminus \{i\} \cap A \neq \phi$
if k is odd, $-\frac{k}{k+1} \in A$, so $|-1 + \frac{k}{k+1}| < \varepsilon$, so $V_{\mathcal{E}}(1) \setminus \{i\} \cap A \neq \phi$
: $1, -1$ are cluster pts. of A . $|1 - \frac{k}{k+1}|$
If $a \neq 1, -1$, $\varepsilon = \min\{|a-1|, |a+1|| \} > 0$ and
 $V_{\mathcal{E}}(a) \cap V_{\mathcal{E}}(1) = V_{\mathcal{E}}(a) \cap V_{\mathcal{E}}(-1) = \phi$
: $V_{\mathcal{E}}(a) \setminus \{a\} \cap A \subseteq \{\sum_{k=1}^{n-1} i\}$ is $m_{\mathcal{E}} \} = finite$
: a is not a cluster pt. of A .
b) Given $g: A \to B$, c a cluster pt of A , $\lim_{\kappa \to \infty} g(\kappa) = L$ means
given $\varepsilon > -i\delta > 0$ set. $x \in A$, $0 < |x-c| < \delta \Rightarrow |g(x) - L| < \varepsilon$
Since f is bounder, $\exists M > 0 \quad \forall x \in A \mid f(x)| \leq M$
Given $\varepsilon > 0$ let $\delta = \frac{\varepsilon}{M}$. If $x \in A \mid 0 < |x-1| = \delta$,
 $|(x-1)f(m)| = |(x-1)| \cdot |f(m)| \leq |x-1| \mid M < \delta M = \frac{\varepsilon}{M} M = \varepsilon$ (1)

2. Prove that $\cos \frac{1}{x}$ fails to have a limit as $x \to 0$, while $\lim_{x \to 0} x \cos \frac{1}{x} = 0$.

Let
$$x_n = \frac{1}{n\pi}$$
, then $x_n \to 0$
But $\cos \frac{1}{x_n} = \cos(n\pi) = (-1)^n$, which diverges.
By the Asgnential criterian $\lim_{x \to 0} \cos \frac{1}{x}$ DNE
 $x \to 0$
 $0 \leq |x \cos \frac{1}{x}| = |x| |\cos \frac{1}{x}| \leq |x| \to 0$
By the Agnaze herma $|x \cos \frac{1}{x}| = 0$ so $x \cos \frac{1}{x} \to 0$
 $x \to 0$

3. Suppose $f: \mathbf{R} \to \mathbf{R}$ is continuous and $A \subset \mathbf{R}$ is closed and bounded. Prove that the image $f_*(A)$ is closed in **R** and bounded.

If
$$f_*(A)$$
 is not bounded, $\forall n \in N = \forall n \in f_*(A) | \forall n | > h$.
Since $| \forall n | \rightarrow \infty \Rightarrow n \Rightarrow \infty$, any subsequence of $\forall n$ diverges.
Since $\forall n \in f_*(A)$, $\forall n \in N = \exists x_n \in A = f(x_n) = \forall n$
Since A is bounded, by the Bolzano-Weierstrass theorem
 $\exists Aubsequence x_{n_{12}} \rightarrow some x^* \in \mathbb{R}$.
Since A is continuous at x^* , by the sequential criterion
 $f(x_{n_{12}}) = \forall n_{12} \rightarrow f(x^*) \stackrel{\sim}{\rightarrow} := f_*(A)$ is bounded.
Given $\forall n \in f_*(A)$, $\forall n \Rightarrow \forall^*$, as betwee pick $x_n \in A$, $f(x_n) = \forall n$
Since A is bounded, $\exists Aubsequence x_{n_{12}} \rightarrow some x^* \in \mathbb{R}$.

:,
$$f(x^*) = y^*$$
, so $y^* \in f_*(A)$, so $f_*(A)$ is closed "

S

4. Suppose $f: \mathbf{Q} \to \mathbf{R}$ can be extended continuously to **R**. Prove that such an extension is unique.

Suppose
$$F,F': \mathcal{B} \to \mathcal{R}$$
 is cont. and $F\left[\begin{array}{c} =F'\right]_{\mathcal{Q}} = f$
 $(\forall x \in \mathcal{Q} \ F(x) = F'_{(x)} = f(x)\right)$
Let $a \in \mathcal{B}$. Since \mathcal{Q} is dense in \mathcal{B} , $\exists Aeg. x_n \in \mathcal{Q}, x_n \to a$.
Since F, F' are controlog the Aeguential orderion
 $F(x_n) \to F(a), F'(x_n) \to F'(a)$.
Since $F(x_n) = F(x_n'), by uniqueness of (inite, F(a) = F'(a).$

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

5. Suppose $f: \mathbf{R} \to \mathbf{R}$ is increasing and $c \in \mathbf{R}$. Prove that f has a right limit at c.

Let
$$S = \{f(x) : x > c\}$$
. Clearly $S \neq \phi$
Since f is incr. $\forall x > c$ $f(x) \ge f(c)$, so
 $f(c)$ is a lower bound for S .
Since IR is complete, $\exists y = \inf S$.
Given $\varepsilon > 0$ $y + \varepsilon$ is not a lower bound for S , so
 $\exists x^* > c$ $f(x^*) < y + \varepsilon$. Let $\delta = x^* - c > 0$.
If $c < x < c + \delta = x^*$, then $y \le f(x) \le f(x^*) < y + \varepsilon$
 $\therefore y = \lim_{x \to c^+} f(x)$

6. Suppose $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^2 \cos \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. Prove that f is differentiable and f' is not continuous at 0.

For
$$x \neq 0$$
 $f'(x) = 2x \cos \frac{1}{x} + x^2 \left(-\sin \frac{1}{x}\right) \left(-\frac{1}{x^2}\right) = 2x \cos \frac{1}{x} + \sin \frac{1}{x}$
 $f'(0) = \lim_{x \to 0} \frac{x^2 \cos \frac{1}{x} - \partial}{x - 0} = \lim_{x \to 0} x \cos \frac{1}{x} = 0$ (see #2)

Suppose
$$\lim_{x \to 0} f(x) = f(0)$$
. Then $\lim_{x \to 0} (2x\cos\frac{1}{x} + \sin\frac{1}{x}) = 0$,
 $x \to 0$
Since $\lim_{x \to 0} 2x\cos\frac{1}{x} = 0$, $\lim_{x \to 0} \sin\frac{1}{x} = 0$, but
 $x \to 0$
Similarly to #2, $\lim_{x \to 0} \sin\frac{1}{x}$ DNE "

7. Find the limits at 0 and ∞ of $(1 + \frac{1}{x})^x$ and prove your results.

$$l_{x} \left(1 + \frac{1}{x}\right)^{x} = x l_{x} \left(1 + \frac{1}{x}\right) = \frac{l_{x} \left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$$

$$l_{x \to \infty} \text{ we have } \stackrel{\circ}{=} \text{ and } if x \to 0 \text{ ve have } \stackrel{\circ}{=} \frac{\infty}{\infty}$$

$$l_{x} \left(1 + \frac{1}{x}\right)^{x} = \frac{1}{x^{2}} \left(-\frac{1}{x^{2}}\right) = \frac{x}{x+1} \left(-\frac{1}{x}\right) = \frac{1}{x}$$

$$l_{x} \left(1 + \frac{1}{x}\right)^{x} = \begin{cases} e & \text{if } x \to \infty \\ 1 & \text{if } x \to 0 \end{cases}$$

8. Let $f: (0,2) \to \mathbf{R}$ be defined by $f(x) = \ln x$. Let $p_n(x)$ denote the degree *n* Taylor polynomial for *f* at 1. Find p_3 and prove that $p_2(x) \le f(x) \le p_3(x)$ for all $x \in (0,2)$.

$$f(x) = \ln x \quad f(1) = 0$$

$$f'(x) = \frac{1}{x} \quad f(1) = 1$$

$$f''(x) = -\frac{1}{x^2} \quad f''(1) = -1$$

$$f'''(x) = \frac{2}{x^3} \quad f'''(1) = 2$$

$$f''''(x) = -\frac{6}{x^4} \quad f''''(1) = -6$$

$$\therefore p_3(x) = x - 1 - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$$

$$F_2(x)$$

$$F_2(x)$$

$$F_3(x) = p_2(x) + \frac{1}{3}(y - 1)^3 \quad \text{for some } y, \ 1 \le y \le x.$$

$$F_3(x) = p_3(x) - \frac{1}{4}(y - 1)^4 \quad \text{for some } y, \ 1 \le y \le x.$$

$$F_3(x) = p_3(x) - \frac{1}{4}(y - 1)^4 \quad \text{for some } y, \ 1 \le y \le x.$$

$$F_3(x) = p_3(x) - \frac{1}{4}(y - 1)^4 \quad \text{for some } y, \ 1 \le y \le x.$$