Midterm 2 / 2011.12.5 / MAT 3233.001 / Modern Algebra

1. Partition the symmetric group S_{3} by left cosets of the cyclic subgroup $\langle(2,3)\rangle$. Do the same with right cosets.

Let $H=\langle(2,3)\rangle$. Since $(2,3)^{2}=(), H=\{(),(2,3)\}$.
Lagrange $\Rightarrow\left|S_{3}\right|=|H|\left[S_{3}: H\right]$. Since $\left|S_{3}\right|=3!=6$ and $|H|=2$, there are $\left[S_{3}: H\right]=3$ cosets.
Left cosets: $H ;(1,2) H=\{(1,2),(1,2,3)\} ;(1,3) H=\{(1,3),(1,3,2)\}$.
Right cosets: $H ; H(1,2)=\{(1,2),(1,3,2)\} ; H(1,3)=\{(1,3),(1,2,3)\}$.
2. Suppose G, G^{\prime} are commutative multiplicative groups and $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism. For y in G^{\prime} express its fibre $\varphi^{-1}(y)=\{x \in G: \varphi(x)=y\}$ as a coset of $\operatorname{ker} \varphi$.
Since φ is onto, there exists $x \in G$ such that $\varphi(x)=y$. Then $\varphi^{-1}(y)=x \operatorname{ker} \varphi$.
Proof: Let $z \in \operatorname{ker} \varphi$ (i.e. $x z \in x \operatorname{ker} \varphi$). Then $\varphi(x z)=\varphi(x) \varphi(z)=y \cdot 1=y$, so $x z \in \varphi^{-1}(y)$.
Conversely, let $x^{\prime} \in \varphi^{-1}(y)$. Since $x^{\prime}=x x^{-1} x^{\prime}$ and $\varphi\left(x^{-1} x^{\prime}\right)=\varphi(x)^{-1} \varphi\left(x^{\prime}\right)=y^{-1} y=1, x^{\prime} \in x \operatorname{ker} \varphi$.
3. Find the solution set for the system of congruences

$$
\begin{array}{r}
35 x \equiv 15 \bmod 50 \\
x \equiv-2 \bmod 30
\end{array}
$$

The first equation is equivalent to $7 x \equiv 3 \bmod 10$, which is equivalent to $7 x \equiv-7 \bmod 10$, therefore equivalent to $x \equiv-1 \bmod 10$. Thus, any solution must be odd. On the other hand, the second equation implies x must be even. Thus, the solution set is empty.
4. Use Euclid's algorithm for the polynomial ring $\mathbf{R}[x]$ to find the greatest common divisor and the Bézout coefficients for $x^{2}+3 x+2$ and $x^{4}+x^{3}+3 x+3$.
Let $p=x^{4}+x^{3}+3 x+3$ and $s=x^{2}+3 x+2$.
Long division gives $p=q s+r$. where $q=x^{2}-2 x+4$ and $r=-5 x-5$.
Since $x=-1$ is a root of $s, r \mid s$. Thus, $\operatorname{gcd}(p, s)=r=-5(x+1)$.
NB: Any associate of r (i.e. any nonzero constant multiple of r), such as $x+1$, is also a valid ged.
Solving for r we obtain the Bézout relation is $r=p-q s$.
\therefore the Bézout coefficients are 1 and $-q=-x^{2}+2 x-4$.
5. Suppose a is a real number and $\varphi: \mathbf{R}[x] \rightarrow \mathbf{R}$ is the evaluation map $\varphi(p(x))=p(a)$. Prove that φ is a ring homomorphism. What are its kernel and image?
Let $p, q \in \mathbf{R}[x]$. Then $\varphi(p+q)=(p+q)(a)=p(a)+q(a)=\varphi(p)+\varphi(q)$ and similarly $\varphi(p q)=(p q)(a)=p(a) q(a)=\varphi(p) \varphi(q)$. Also $\varphi(1)=1$, so φ is a homomorphism.
For any $b \in \mathbf{R}, \varphi(b)=b$, so the image of f is \mathbf{R}.
For any $q \in \mathbf{R}[x], \varphi((x-a) q(x))=(a-a) q(a)=0$, so $(x-a) q(x) \in \operatorname{ker} \varphi$.
Conversely, if $p \in \operatorname{ker} \varphi$, then $p(a)=0$, so $x-a$ divides p.
Therefore, $\operatorname{ker} \varphi=\{(x-a) q(x): q \in \mathbf{R}[x]\}=\langle x-a\rangle$.

