1. Partition the symmetric group S_3 by left cosets of the cyclic subgroup $\langle (2,3) \rangle$. Do the same with right cosets.

```
Let H = \langle (2,3) \rangle. Since (2,3)^2 = (), H = \{(),(2,3)\}.

Lagrange \Rightarrow |S_3| = |H|[S_3:H]. Since |S_3| = 3! = 6 and |H| = 2, there are [S_3:H] = 3 cosets.

Left cosets: H; (1,2)H = \{(1,2),(1,2,3)\}; (1,3)H = \{(1,3),(1,3,2)\}.

Right cosets: H; H(1,2) = \{(1,2),(1,3,2)\}; H(1,3) = \{(1,3),(1,2,3)\}.
```

2. Suppose G, G' are commutative multiplicative groups and $\varphi : G \to G'$ is a surjective homomorphism. For y in G' express its fibre $\varphi^{-1}(y) = \{x \in G : \varphi(x) = y\}$ as a coset of $\ker \varphi$.

```
Since \varphi is onto, there exists x \in G such that \varphi(x) = y. Then \varphi^{-1}(y) = x \ker \varphi.

Proof: Let z \in \ker \varphi (i.e. xz \in x \ker \varphi). Then \varphi(xz) = \varphi(x)\varphi(z) = y \cdot 1 = y, so xz \in \varphi^{-1}(y).

Conversely, let x' \in \varphi^{-1}(y). Since x' = xx^{-1}x' and \varphi(x^{-1}x') = \varphi(x)^{-1}\varphi(x') = y^{-1}y = 1, x' \in x \ker \varphi.
```

3. Find the solution set for the system of congruences

$$35x \equiv 15 \mod 50$$
$$x \equiv -2 \mod 30$$

The first equation is equivalent to $7x \equiv 3 \mod 10$, which is equivalent to $7x \equiv -7 \mod 10$, therefore equivalent to $x \equiv -1 \mod 10$. Thus, any solution must be odd. On the other hand, the second equation implies x must be even. Thus, the solution set is empty.

4. Use Euclid's algorithm for the polynomial ring $\mathbf{R}[x]$ to find the greatest common divisor and the Bézout coefficients for $x^2 + 3x + 2$ and $x^4 + x^3 + 3x + 3$.

Let
$$p = x^4 + x^3 + 3x + 3$$
 and $s = x^2 + 3x + 2$.
Long division gives $p = qs + r$, where $q = x^2 - 2x + 4$ and $r = -5x - 5$.

Since x = -1 is a root of s, r|s. Thus, gcd(p, s) = r = -5(x + 1).

NB: Any associate of r (i.e. any nonzero constant multiple of r), such as x + 1, is also a valid gcd.

Solving for r we obtain the Bézout relation is r = p - qs.

 \therefore the Bézout coefficients are 1 and $-q = -x^2 + 2x - 4$.

5. Suppose a is a real number and $\varphi \colon \mathbf{R}[x] \to \mathbf{R}$ is the evaluation map $\varphi(p(x)) = p(a)$. Prove that φ is a ring homomorphism. What are its kernel and image?

Let
$$p, q \in \mathbf{R}[x]$$
. Then $\varphi(p+q) = (p+q)(a) = p(a) + q(a) = \varphi(p) + \varphi(q)$ and similarly $\varphi(pq) = (pq)(a) = p(a)q(a) = \varphi(p)\varphi(q)$. Also $\varphi(1) = 1$, so φ is a homomorphism.

For any $b \in \mathbf{R}$, $\varphi(b) = b$, so the image of f is \mathbf{R} .

For any $q \in \mathbf{R}[x]$, $\varphi((x-a)q(x)) = (a-a)q(a) = 0$, so $(x-a)q(x) \in \ker \varphi$.

Conversely, if $p \in \ker \varphi$, then p(a) = 0, so x - a divides p.

Therefore, $\ker \varphi = \{(x-a)q(x): q \in \mathbf{R}[x]\} = \langle x-a \rangle$.