1. Prove by induction that $n!\leq n^{n}$ for all natural numbers n.

Basis of induction: $1!=1$ and $1^{1}=1$, so $1!\leq 1^{1}$.
Assume $(n-1)!\leq(n-1)^{n-1}$. Then $n!=n(n-1)!\leq n(n-1)^{n-1} \leq n \cdot n^{n-1}=n^{n}$. \because
2. Use Euclid's algorithm to find the gcd and the Bézout coefficients for 58 and 44.
$58=1 \cdot 44+14,44=3 \cdot 14+2,14=7 \cdot 2$, so $\operatorname{gcd}(58,44)=2$.
Solve for remainders $2=44-3 \cdot 14,14=58-1 \cdot 44$ and back-substitute:
$2=44-3(58-1 \cdot 44)=4 \cdot 44-3 \cdot 58 \cdots$
3. Suppose a, r, m are natural numbers with $a \equiv r \bmod m$. Prove that $\operatorname{gcd}(a, m)=\operatorname{gcd}(r, m)$.

Since $a \equiv r \bmod m$, we have $a-r=m q$ for some $q \in \mathbf{Z}$, so $r=a-m q$.
Since gcd (a, m) divides both a and m, it divides r.
Since $\operatorname{gcd}(a, m)$ is a common divisor of r and m, it divides $\operatorname{gcd}(r, m)$.
Conversely, since gcd (r, m) divides both r and m, it divides $a=m q+r$.
Since $\operatorname{gcd}(r, m)$ is a common divisor of a and m, it divides $\operatorname{gcd}(a, m)$.
Since the two gcd's are natural numbers dividing each other, they are equal. ${ }^{-}$
4. Find all solutions modulo 33 of the linear congruence $15 x \equiv 21 \bmod 33$.

Dividing by $\operatorname{gcd}(15,33)=3$ we obtain $5 x \equiv 7 \bmod 11$.
Since $5 \cdot(-2) \equiv 1 \bmod 11$, multiplying by -2 gives $x \equiv-14 \bmod 11 \equiv 8 \bmod 11$.
(Euclid's algorithm: $11=2 \cdot 5+1$, so we get the Bézout relation $1=11-2 \cdot 5$)
Thus, $x \equiv 8,19,30 \bmod 33$.
5. Prove that any nonzero element in a finite commutative ring with unity is either a unit or a zero divisor, but not both.
Suppose R is a finite commutative ring with unity and $x \in R$. Assume $\mathbf{N}=\{0,1,2, \ldots\}$.
Since R is finite, by the pigeonhole principle, some of the natural powers of x must agree.
(Since \mathbf{N} has more elements than R, no function $\mathbf{N} \rightarrow R$, particularly $i \mapsto x^{i}$, can be 1-1.)
In other words, $x^{i}=x^{j}$ for some $i>j$. Then $x^{i}-x^{j}=0$, so $x^{j}\left(x^{i-j}-1\right)=0$.
Let $k=i-j$. Then $k>0$ and $x^{j}\left(x^{k}-1\right)=0$. We may further assume j is minimal.
(Let $S=\left\{m \in \mathbf{N}: x^{m}\left(x^{k}-1\right)=0\right\}$. Since $j \in S$, by the well ordering principle S has a minimum.)
If $j=0$, then $x^{k}-1=0$, so $x \cdot x^{k-1}=x^{k}=1$, so x is a unit.
If $j>0$, then $x^{j-1}\left(x^{k}-1\right) \neq 0$, but $x \cdot x^{j-1}\left(x^{k}-1\right)=0$, so x is a zero divisor. \because

