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Since z2 + 4 = (z − 2i)(z + 2i), the singularities of the
integrand are 0 and ±2i, of which 0 and −2i are inside
Γ (see picture).

By the deformation principle (a direct consequence of
Cauchy’s Theorem), integration along Γ is equivalent
to integration along Γ1 and Γ2 (see picture), where we
can apply Cauchy’s Integral Formula.
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Note that cos(−2i) = 1
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2. The origin is the only singularity of the integrand and is inside Γ, so by Cauchy’s Integral
Formula
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3. Parametrize the segment z = 1(1−t)+it = 1+(i−1)t, 0 ≤ t ≤ 1. Then z = 1+(−i−1)t =
1 − (i + 1)t and dz = (i − 1) dt, so

∫

z dz =

∫ 1

0
[1 − (i + 1)t](i − 1) dt =

∫ 1

0
[(i − 1) + 2t] dt = [(i − 1)t + t2]10 = i − 1 + 1 = i

4. Nonconstant entire functions have dense images, so ...

Claim: f is constant.

Proof: Since R [f(z)] > 0, the function misses the left half-plane and, in particular,
misses the open disc of radius 1 centered at −1. In other words, |f(z) + 1| ≥ 1, so

1
|f(z)+1| ≤ 1, so 1

f(z)+1 is a bounded entire function. By Liouville’s Theorem it is constant
1

f(z)+1 = c, so f(z) = 1
c
− 1 is also constant.
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