Midterm 2 / 2018.4.18 / MAT 3213.001 / Foundations of Analysis

1. Suppose $\forall n \ x_n \in \mathbf{R}$ with $|x_n| < 1/n$. Prove that the sequence (x_n) is Cauchy directly from the definition. What is the limit of (x_n) ?

Given
$$\varepsilon > 0$$
. By the Archimedean property
 $\exists k > \frac{2}{\varepsilon}$. If $n,m \geqslant k$, then $\frac{1}{n} < \frac{1}{k} < \frac{\varepsilon}{2}$
 $k = \frac{1}{k} < \frac{\varepsilon}{2}$
 $|x_n - x_m| \le |x_n| + |x_m| < \frac{1}{n} + \frac{1}{m} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$
 $|x_n| < \frac{1}{n} \Rightarrow -\frac{1}{n} < x_n < \frac{1}{n}$
 \vdots By the squeeze law $x_n \to 0$ \vdots

- 2. Suppose $\forall n \ a_n > 0$ and the series $\sum a_n$ converges.
 - (a) Prove that $\sum a_n^2$ converges.
 - (b) Show by example that $\sum \sqrt{a_n}$ need not converge.

But
$$\sum_{n=1}^{1} dir (harmonic series)$$
 :

3. Use the definition of limit to prove that $x^2 + x + 1 \rightarrow 7$ as $x \rightarrow 2$.

Scretch work:
$$|x^{2}+x+1-7| = [x^{2}+x-6]$$

= $|x-2||x+3|$
 $x-2 \quad x+3 \quad x-2 \quad x^{2}+x-6 \quad x^{2}-2x \quad x^{2}-$

4. Find the limit of $\frac{x}{x+1}$ as $x \to -1^+$. Prove your assertion.

