1. Suppose A, B are nonempty bounded subsets of \mathbf{R}. Let $A+B=\{a+b: a \in A, b \in B\}$. Prove that $\inf (A+B)=\inf A+\inf B$.
(i) $\operatorname{int} A+\inf B$ is a lower bd for A :

Let $x \in A+B$, then $\exists a \in A, b \in B \quad x=a+b$
Since $a \in A, \quad a \geqslant \inf A$. Sim: $b \geqslant \inf B$

$$
\therefore \quad x=a+b \geqslant \inf A+\inf B . \quad \ddot{U}
$$

(ii) inf $A+\inf B$ is the greatest lower bd for A :

Suppose $r>\inf A+\operatorname{in} f B$
Let $\delta=r-\inf A-\inf B$. Then $\delta>0$, so $\frac{\delta}{2}>0$.
Inf $A+\frac{\delta}{2}$ is nos a lower bd for A,
So $\exists a \in A \quad a<\inf A+\frac{\delta}{2}$. $\operatorname{sim}: 子 b \in B b<\inf B+\frac{\delta}{2}$

$$
\begin{aligned}
a+b & <\inf A+\frac{\delta}{2}+\inf B+\frac{\delta}{2} \\
& =\inf A+\inf B+\delta \\
& =\inf A+\inf B+r-\inf A-\inf B=r
\end{aligned}
$$

$\therefore r$ is n A a lower bd tor $A+B$.
Alt. proof: (f $a \in A, b \in B$, then $a \geqslant \inf A, b \geqslant \inf B$ S. $\quad a+b \geqslant \inf A+\inf B$

$$
\begin{aligned}
& \therefore \quad \inf (A+B) \geqslant \inf A+\inf B \\
& \forall a \in A, b \in B \quad \inf (A+B) \leqslant a+b \\
& \quad a \geqslant \inf (A+B)-b \\
& \therefore \quad \inf A \geqslant \inf (A+B)-b \\
& \quad b \geqslant \inf (A+B)-\inf A \quad \therefore \inf A+\inf B= \\
& \inf B \geqslant \inf (A+B)-\inf A \\
& \inf A+\inf B \geqslant \inf (A+B) \quad=\inf (A+B)
\end{aligned}
$$

2. Prove that the sequence $\underbrace{(-1)^{n} \frac{n}{n+1}}$ diverges.

Pf 1

$$
\begin{aligned}
& \text { El } x_{2 k}=\frac{2 k}{2 k+1}=\frac{2}{2+\left(\frac{n}{k}\right) \rightarrow 0} \rightarrow 1 \\
& x_{2 k+1}=-\frac{2 k+1}{2 k+2}=-\frac{2+\left(\frac{1}{k}\right)}{2+\left(\frac{2}{k}\right)} \rightarrow-1
\end{aligned}
$$

Two subteg. w. different limits $\Rightarrow x_{n}$ is $\mathbb{\text { iv }}$.

Pf 2 Suppose $x_{n} \rightarrow x$, then $x_{n+1} \rightarrow x$

$$
\begin{align*}
& \left|x_{n+1}-x_{n}\right| \rightarrow|x-x|=0 \\
& \left.\left|(-1)^{n+1} \frac{n+1}{n+2}-(-1)^{n} \frac{n}{n+1}\right|=\left\lvert\,(-1)^{n+1}\left[\frac{n+1}{n+2}+\frac{n}{n+1}\right]\right.\right] \\
& =\frac{n+1}{n+2}+\frac{n}{n+1}=\frac{n^{2}+2 n+1+n^{2}+2 n}{n^{2}+3 n+2}=\frac{2 n^{2}+4 n+1}{n^{2}+3 n+2} \\
& =\frac{2+\left(\frac{4}{n}+\left(1 / n^{2}\right)\right.}{1+(3 / n)\left(2 / n^{2}\right.} \rightarrow 2
\end{align*}
$$

Pf 3 Suppose $x_{n} \rightarrow x$. x cannA be both $1 \&-1$.
WLOG assume $x \neq 1$. Let $\delta=|x-1| / 2$ (so $\left.V_{\delta}(1) \cap V_{\delta}(x)=\varnothing\right)$
Since $x_{n} \rightarrow x, \exists k, \forall n \geq k, \quad\left|x_{n}-x\right|<\delta$
Since $\frac{n}{n+1}=\frac{1}{1+(-1 / n) \rightarrow 0} \rightarrow 1 \quad \exists k_{2} \quad f_{n} \geqslant k_{2} \quad\left|\frac{n}{n+1}-1\right|<\delta$
Pick even $n \geqslant \max \left\{k, k_{2}\right\}$

$$
|x-1| \leq\left|x-x_{n}\right|+\left|x_{n}-1\right|<\delta+\delta=2 \delta=|x-1| \ddot{\partial}
$$

3. Suppose $A \neq \varnothing$ and bounded below. Prove there is a sequence $\left(a_{n}\right)$ in A such that $a_{n} \rightarrow \inf A$.
$\forall n \quad \inf A+\frac{1}{n}>\inf A$, so $\inf A+\frac{1}{n}$ is $n \Omega$ a lower bound for A

Le $\exists a_{n} \in A \quad a_{n}<\inf A+\frac{1}{n}$. Now apply squeeze law:

$$
\begin{aligned}
& \operatorname{infA} \leq a_{n}<\inf A+\frac{1}{n} \\
& \therefore a_{n} \rightarrow \inf A \backsim
\end{aligned}
$$

4. Suppose $x_{1}=1$ and $x_{n}=\sqrt{x_{n-1}+2}$ for $n>1$. Show that the sequence $\left(x_{n}\right)$ is monotone increasing and bounded above, thus convergent. Find the limit.
Prelim. work: (i) Solve

$$
\begin{aligned}
& x=\sqrt{x+2} \\
& x^{2}=x+2 \\
& x^{2}-x-2=0 \\
& x=2-1
\end{aligned}
$$

(ii) Solve $x<\sqrt{x+2}$: $\quad x<2$
(iii) Claim: $\forall n \quad x_{n}<2$.

Basis: $\quad x_{1}=1<2$.

$$
\text { If } n>1, \quad x_{n}=\sqrt{x_{n-1}+2}<\sqrt{2+2}=2
$$

(iv) $\left(x_{n}\right)$ is stricly increasing

Since $x_{n}<2, \quad x_{n+1}=\sqrt{x_{n}+2}>x_{n}$
(v) Since $\left(x_{n}\right)$ is fld above \& increasing,

$$
\exists x \quad x_{n} \rightarrow x_{-}
$$

Take limit of $\quad x_{n+1}=\sqrt{x_{n}+2}: x=\sqrt{x+2}$

$$
\therefore x=2 \quad \text { so } \quad x_{n} \rightarrow 2
$$

Alt. Proof of (iv) Induction: Basis $x_{2}=\sqrt{1+2}=\sqrt{3}>x_{1}=1$ if $n>2 \quad x_{n}-x_{n-1}=\sqrt{x_{n-1}+2}-\sqrt{x_{n-2}+2}$

$$
\therefore x_{n-1}-x_{n-2}>0 \Rightarrow x_{n}-x_{n+1}
$$

($\sqrt{x+2}$ is an increasing function

