Midterm 1 / 2018.2.21 / MAT 3213.001 / Foundations of Analysis

1. Suppose A, B are nonempty bounded subsets of **R**. Let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $\inf(A + B) = \inf A + \inf B$.

(i)
$$intA + infB$$
 is a lower bd for A :
Let $x \in A + B$, then $\exists a \in A, b \in B$ $x = a + b$
Since $a \in A$, $a \ge infA$. Sim: $b \ge infB$
 $\therefore x = a + b \ge infA + infB$. \Box
(ii) $infA + infB$ is the greatest lower bd for A :
Smppose $r > infA + infB$
Let $G = r - infA - infB$. Then $f \ge 0, so \frac{d}{2} > 0$.
 $lnfA + \frac{d}{2}$ is not a clower bd for A ,
So $\exists a \in A$ $a \le infA + \frac{c}{2}$. Sim: $\exists b \in B$ $b \le infB + \frac{c}{2}$
 $a + b < infA + \frac{c}{2} + infB + \frac{c}{2}$
 $= infA + infB + C$
 $= infA + infB + C$
 $infA + b \ge infA + infB + f$
 $A + b > infA + infB + f$
 $inf(A + b) \ge infA + infB$
 $infA + infB = inf(A + B) \le a + b$
 $a \ge inf(A + B) - b$
 $infA \ge inf(A + B) - infA$
 $infA + infB \ge inf(A + B) - infA$
 $infA + infB \ge inf(A + B)$

2. Prove that the sequence $(-1)^n \frac{n}{n+1}$ diverges.

$$\begin{array}{cccc}
Pf2 & Smppose & \chi_{n} \rightarrow \chi , \text{ then } \chi_{n+1} \rightarrow \chi \\
\left[\chi_{n+1} - \chi_{n}\right] \rightarrow \left[\chi - \chi\right] = 0 \\
\left[(-1)^{n+1} \frac{n+1}{n+2} - (-1)^{n} \frac{n}{n+1}\right] = \left[(-1)^{n+1} \left[\frac{n+1}{n+2} + \frac{n}{n+1}\right]\right] \\
= \frac{n+1}{n+2} + \frac{n}{n+1} = \frac{n^{2} + 2n + 1 + n^{2} + 2n}{n^{2} + 3n + 2} = \frac{2n^{2} + 4n + 1}{n^{2} + 3n + 2} \\
= \frac{2 + 4n + 1n^{2}}{1 + 3n + 2} \rightarrow 2 & 0 \\
= 0 & 0 & 0
\end{array}$$

Pf3 Suppose $x_n \Rightarrow x$. $x \operatorname{conn} A$ be both $1 \ge -1$. $W \ge 0$ G assume $x \neq 1$. Let $\delta = [x - 1]/2$ $(so \forall S(1) \cap \forall_{\delta}(x) = \emptyset)$ Since $x_n \Rightarrow x$, $\exists k_1, \forall n \ge k_1, |x_n - x| < \delta$ Since $\frac{n}{n+1} = \frac{1}{1+1} = -3$ $\exists k_2, \forall n \ge k_2, |\frac{n}{n+1} - 1| < \delta$ Pick even $n \ge \max \{k_1, k_2\}$ $|x - 1| \le (x - x_n | + |x_n - 1] < \delta + \delta = 2\delta = |x - 1|$ 3. Suppose $A \neq \emptyset$ and bounded below. Prove there is a sequence (a_n) in A such that $a_n \to \inf A$.

So
$$\exists a_n \in A$$
 $a_n < \inf A + \frac{1}{n}$. Now apply squeeze law:
 $\inf A \leq a_n < \inf A + \frac{1}{n}$
 $\exists \inf A \leq a_n < \inf A + \frac{1}{n}$

∴ an → infA ~

4. Suppose $x_1 = 1$ and $x_n = \sqrt{x_{n-1} + 2}$ for n > 1. Show that the sequence (x_n) is monotone increasing and bounded above, thus convergent. Find the limit.

