1. Suppose (x_n) is a bounded sequence and $\lim y_n = 0$. Use the definition of limit to prove $\lim x_n y_n = 0$.

Since
$$(x_n)$$
 is bounded, $\exists M \ge 0$ $\forall n \quad |x_n| \le M$
Given $\Sigma \ge 0$, Fince $y_n \Rightarrow 0$
 $\exists k \quad \forall n \ge k \quad |y_n| < \frac{\Sigma}{M} \ge 0$
 $\exists r = [x_ny_n] = |x_n||y_n| < M = \Sigma$

2. Suppose (x_n) is sequence in **R** that is not bounded above. Prove that (x_n) has a subsequence convergent to $+\infty$.

If
$$(x_n)$$
 is not bounded above, then
any tail (x_k, x_{k+1}, \cdots) is astbounded above
Pf (f not, $\exists k \exists M \ge 0$ $\forall n \ni k$ $x_n \le M$
Then $\forall n$ $x_n \le \max \{x_i, x_2, \dots, w_{n-1}\}$ M_i^3 H_i^3
If z_n is increasing and not bounded above,
then $z_n \longrightarrow +\infty$.
Pf Given ≥ 0 , Since $\frac{1}{2}$ is of an upper
bound for (z_n) , $\exists k = 2k \ge \frac{1}{2}$
Since (z_n) is increasing, for $n \ge k \ge 2k \ge \frac{1}{2}$
Since (z_n) is increasing, for $n \ge k \ge 2k \ge \frac{1}{2}$
Since (x_n) is not bounded above, the tail
 $x_{n_1+1}, x_{n_1+2}, x_{n_2+3}$ is not bounded above,
So $\exists n_2 \ge n_1$ st . $x_{n_2} \ge \max\{x_{n_1}, \frac{2}{2}\}$
Then (x_{n_1}) is an increasing Aubaequence,
 not bounded above (each $\forall_{n_1} \ge j$)
 $\therefore (x_{n_1}) \longrightarrow +\infty$

3. Suppose (x_n) is a bounded sequence in **R** and $\limsup x_n = \liminf x_n$. What can you conclude? Prove your assertion.

4. Prove that every Cauchy sequence in \mathbf{R} is bounded.

By def of Canchy teq. with
$$\mathcal{E} = 1$$

 $\exists k \quad \forall n, n \ge k \quad |x_n - x_m| \le 1$
En particular, since $k \ge k \quad \forall m \ge k \quad |x_k - x_m| \le 1$
 $\therefore \quad [x_m] - |x_k| \le |x_k - x_m| \le 1$
 $\Rightarrow \quad \forall m \ge k \quad |x_m| \le (x_k| + 1)$
So $\forall m \quad [x_m] \le \max \ge |x_i|, |x_2|, \dots, |x_{k-1}|, |x_k| + 1]$
 \because

5. Suppose $\sum x_n$ is convergent and $\sum y_n$ is divergent. Prove $\sum (x_n + y_n)$ is divergent.

Suppose
$$\Sigma(x_n+y_n)$$
 converges.
then $\lim_{\substack{k \to \infty \\ n = 1}} \frac{k}{\sum (x_n+y_n)} e_{\chi i} sts.$
Since $\Sigma \times n$ converges, $\lim_{\substack{k \to \infty \\ k \to \infty}} \frac{k}{n^{-1}} e_{\chi i} sts.$
 $\lim_{\substack{k \to \infty \\ n = 1}} \frac{k}{\sum (x_n+y_n-x_n)} = \sum (x_n+y_n) - \sum x_n$
 $\sum n^{-1} n^{-1} n^{-1} n^{-1}$
reshuffling finite sums is ok.