Midterm 1 / 2017.2.23 / MAT 3213.002 / Foundations of Analysis

1. Let $c \in \mathbf{Q}$ and $C = \{r \in \mathbf{Q}: r > c\}.$

(a) Prove that C is a Dedekind cut (C represents the real number c).

(b) Suppose D is a Dedekind cut. Prove that D < C if and only if $c \in D$.

Hint: $D < C \Leftrightarrow C$ is a proper subset of D.

Deselvind cuts are nonempty proper rays (lotheright) without a min.
a) $C+I \in \mathbb{Q}$, $C+I > C$, so $C+I \in C$, so $C \neq \phi$
$C \neq C$, $S \subset \notin C'$, $S \subset \notin C' \neq \mathbb{C}$ (proper)
Ray: Let rEC and SZr, Since r>c, S>C, So SEC "
herrec, then r>c, so r> r+c>c
So <u>ff</u> EC, so r is not min C. (density)
: C'has no min : C'is a Decekind cut
b) DCC (=> C is a proper Aubset of D
$(C \leq D \land C \neq D)$
"=)" Suppose $D \leq C$, then $C \neq D$, so
JreDNC
Since r & C, r > C, r < C
Since rED and D is a ray and CZr, CED "
"E" suppose CED, since CPC, CEC.
Given rEC, r>C, so since CED, rED :: (SD
Since CEDIC, Cis a proper subset of D'

3. For each of sup/inf/max/min either find it or state it doesn't exist for the set $\{1/n^2: n \in \mathbb{N}\}$. Prove your assertions.

$$S = \{1, \frac{1}{4}, \frac{1}{7}, \frac{1}{25}, \dots\}$$

max $S = 1$ (so sup $S = 1$) inf $S = 0$ (no min)
 $1 \in S$ and $\forall n \in \mathbb{N}$ $\frac{1}{n^2} \leq 1$, so $1 = \max S$.
 $\forall n \in \mathbb{N}$ $\frac{1}{n^2} > 0$, so 0 is a lower bound for S .
 $If u > 0$, by Archimedean property
 $\exists n \in \mathbb{N}$ $u > \frac{1}{\sqrt{u}}$, then $\frac{1}{n} < \sqrt{u}$
 $S = \frac{1}{n^2} < u$, so u is $nf = lower bd for S$
 $i = \inf S = 0$.
Since $0 \notin S$. 0 is not min S_{3} for nomin.

4. Suppose A, B are nonempty bounded subsets of **R**. Prove that $\sup(A \cup B) = \max \{\sup A, \sup B\}$.

5. Does the sequence
$$\frac{n}{n+1}$$
 converge? Prove your assertion. Same for the sequence $(-1)^n \frac{n}{n+1}$.
 $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots$
Grian $S > 0$, Ren Arreh invedear property
 $\exists k \in \mathbb{N}$ $k > \frac{1}{2}$. Thun $\forall n \geqslant k$
 $n+1 > n \geqslant k > \frac{1}{2}$, \Im $\frac{1}{n+1} < \mathbb{E}$, so
 $|1 - \frac{n}{n+1}| = \frac{1}{n+1} < \mathbb{E}$
Suppose $(-1)^n \frac{n}{n+1} \rightarrow \mathbb{L}$, then $h \neq 1$ or $L \neq -1$.
Cose $L \neq -1$ is similar $+3 \perp \neq 1$, since $-\frac{n}{n+1} \rightarrow -1$,
so assume $L \neq 1$. Preck: $S > 0$ such that
 $V_{g}(L) \cap V_{g}(1) = \frac{1}{2}$
For example, let $\mathcal{E} = \frac{|L-1|}{2}$
Since $(-1)^n \frac{n}{n+1} \rightarrow \mathbb{L}$, $\exists k_1, \forall n \geqslant k_1, (-1)^n \frac{n}{n+1} \in V_{g}(L)$
Since $\frac{n}{n+1} \rightarrow 1$, $\exists k_2, \forall n \geqslant k_2, (-1)^n \frac{n}{n+1} \in V_{g}(L)$
For any $n \geqslant \max f k_1, k_2 \end{cases}$, $n - even$
 $\frac{n}{n+1} \in V_{g}(L) \cap V_{g}(1) = \frac{n}{n+1}$

Alt: Lemma
$$(f \ \chi_{h} \rightarrow L, fhen |\chi_{n+1} - \chi_{n}| \rightarrow 0$$

Pf Given $\Sigma \supset 0$, $\exists k \quad \forall n \ni k \quad |\chi_{n} - L| < \frac{\varepsilon}{2}$
Since $n+1 \supset n$, also $|\chi_{n+1} - L| < \frac{\varepsilon}{2}$
 $|\chi_{n+1} - \chi_{n}| \leq |\chi_{n+1} - L| + |L - \chi_{n}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
Alt proof: $\chi_{n+1} - \chi_{n} \stackrel{c}{\rightarrow} L - L = 0$
So $|\chi_{n+1} - \chi_{n}| \rightarrow 0$ $\overset{c}{\sim}$

$$\left| (-1)^{n} \frac{n}{n+1} - (-1)^{n+1} \frac{n+1}{n+2} \right| = \frac{n}{n+1} + \frac{n+1}{n+2} \rightarrow 1+1 = 2$$

$$4 = 0$$